Julia for Scientists

Tomas Fiers

Originally presented at the Lunchtime Data Club,
School of Psychology, University of Nottingham

Dec7,2022

If you’re using Excel, SPSS, Stata, JASP,

Why learn a programming

language?

O = u = Al _
= tf:{] @ L alle | :ﬁ & % E |lece Outputs [D:] - 1BM SPSS Viewer
R
SHER M e+ FEBKI =5 N
& vostion p 395 P yrsae g becrwag _“'I v & oupu Dependent Variable: Hourly Salary
3 3 LBl v & Univariate Analysis of Type M Sum
1 1 1 2 1372 é Trle Source of Squares daf Mean Square F Sig.
2 ¢] 2 1648 % :‘:*!5 - Corrected Mode! 5$701.240* 11 518.295 36.709 000
- tween-Subject
3 o ! 3 2138 1 G Tests of Between Intercept 758118.337 1 758118337 53695.262 000
: 1 1 1 1138 v {8 Profie Piots positon 2051.609 1 2051.609 145.309 .000
3 [1 3 2156 ‘ E1Tite yrsscale 2872.222 5 574.444 40.686 000
- o 1 1 ITSh) o, @ Years Bpent position * yrsscale 118.065 s 23613 1672 138
- R~ [40930707 2899 14.119
7 1 1 3 FTRY] Tl 1o 1 -119
F 5 i : e — Notes Total 1212879.42 2911
. i 5 5w 4 L Betneen-Subject Corrected Total 46631.948 2910
2 3 1 L4 Tests of Between 2. R Squared = .122 (Adjusted R Squared = .119)
0 1 1 1 185¢ | v & Profie Plots
n 0 1 1 545 1 o ;‘:" exve
[/ rs Expern
= - 3 ") g v b P Profile Plots
3 1 1 2 e
1 [} 1 2 2083 Estimated Marginal Means of Hourly Salary
B ¢ L B8 g 2500 Nurse Type
1 1 1 2 1681
v [1 2 1755 1
B v
18 [1 3 173 1 a
1 1 1 2 w7 g
0] 1 3 1335 Il | E
— =
2 [1 2 17.03 =
2 1 1 3 1 o
- <
3 o 1 3 2067 s
2% (3 1 2 1341 i =
e
s i 1 3 202 E X
% ° 1 1 23 =
b2 ° 1 3 1648 1 w
% 1 1 3 1227
» [1 3 a5 i
0 [1 2 1767 I
n 1 1 2 120 1 Sorless 6-10 11-15 16-20 21-35 36 or
1 1 11 more
» ° 1 1 2044 |
— | Years Experience
Error bars: 95% C1
il
IBM SPSS Statistics Processor is ready

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

Why program?

Automate analyses
— less error-prone

Reproducibility

* Customize:
* Special plots
* Tweak analyses

Run simulations

For fun

An example custom plot:

Probability density

e=== This study

Roxin

O'Connor
L 1 1 L L 1 1 L L 1 1 L L 1 1] el L Ll 1l L1
0 5 10 15 Hz 0.1 1 10 Hz

Input firing rate

(log scale)

Julia for Scientists - Tomas Fiers - Dec 2022

-V2.1

Choosing a programming language

as a researcher

First released Free & open? Online community
(The new builds on & (Hackable, “own your code- (= Learning resources &
learns from the old) running environment”) documentation iterations)
* Main choices:
R 1995 /1976 (S) Yes Huge
Python 1991 Yes Huge
e Others
Julia 2012 Yes Medium
Matlab 1979 No Large

e ..is also choosing a community

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

¥ ™V or
@vzverovich

Replying to @lefticus

Julia is Matlab without users

3:28 AM - Feb 21, 2022

Guillaume Dalle
@giomdal

Matlab is Julia without open source contributors 5%

€© O = vic or@vzverovich - Feb 21
Replying to @lefticus
Julia is Matlab without users

8:59 AM - Mar 20, 2022

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

Julia syntax

using Unitful: MQ, ms, mV # Import from package

Simulate a simple leaky-integrate-and-fire (LIF) neuron, given
input current ‘I' and a timestep ‘At‘.
Return when the neuron fires its first spike.

The neuron’s input resistance ‘R' and time constant ‘t‘ can be
customized by keyword argument.
function first_spike(I, At; R = 100MQ, T = 20ms)
N = length(I) # Number of samples
v = -70mV # Resting membrane potential
for 1 in 1:N

dv = -v + RxI[i] # Leaky current integration
v += dv/T % At # Euler integration of ODE
if v > -55mV # Spike!
return time = 1 % At
end
end
return nothing # Never spiked

end

In Python / R / Matlab:
“Avoid for-loops”
“Write vectorized code”

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

Compilation: your code w the CPU

* If one line of Julia code corresponds “Z = x + y”
to just a few CPU instructions ~—
e .then the same line in base Python / R / Matlab will often
correspond to an order of magnitude more CPU instructions R/Python Julia
e ..That’s why the code that does the ‘real’ numeric work in these
languages is actually written in C/ C++ CPU instructions: —_
NumPy, PyTorch, Tensorflow, dplyr, ...: all have their core written ~———
in a different language —_—
)) . —
e ..That’s why, to have your code run fast, you’re discouraged from —_————
L. . N~
writing ToT-loops for numeric code ..
e ..and instead use the provided library functions
e.g. np.where(...) *
Matlab added JIT compilation in 2015
* Python is often used as “glue-code” (see next slide) (but it’s rather opaque)
Python can have JIT compilation via the fantastic
* If you want a custom numeric algorithm that’s not provided by Numba package. (But you can only use base

. . Python with Numba, not arbitrary other packages).
the libraries, you need to learn C / C++ Y Y packages)

The “two languages-problem”

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

http://www.mathworks.com/products/matlab/performance.html

= Miles Cranmer

W @MilesCranmer
The more | use Julia, the more Python and its numeric
libraries look like a Victorian-era stagecoach with jet

engines duct-taped to it, each pointing a different
direction (=mutually incompatible).

It's such a weird ecosystem, and makes it so much
harder for users to contribute.

5:50 PM - Nov 7, 2022

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

JIT compilation

* If one line of Julia code corresponds to just a few CPU instructions

e ..then the same line in base Python / R / Matlab™ will often correspond to an order of
magnitude more CPU instructions

* Why is this ™7

* The same line of code (say, z = x + V) does different things,
based on the type of X and y

* Python, R, and Matlab need to check the types of X and ¥
every time the line is run, and then call the appropriate subroutines

* Hence all these extra CPU instructions

 Julia will infer the types of x and y
e When? The first time the function that contains our line of code is called

* It does this type inference based on the arguments that the function was called with (more
specifically, their types), and by analyzing the function’s source code you wrote

* | then compiles a fast version of the function
This is just-in-time (JIT) compilation

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

Data analysis in Julia

Example of working with a DataFrame containing
missing values, in a Jupyter notebook
i Data Fra meS,jl (loading data from Arrow, which is useful for data interchange with
 Tidyverse’s dplyr & Python’s Pandas equivalent R or Python}:
e Better APl than Pandas, imho
* In the very capable hands of Bogumit Kaminski

e Check out his tutorials:
github.com/bkamins/Julia-DataFrames-Tutorial

y = Arrow.Table("x.arrow”) |»> DataFrame

3x4 DataFrame
 Work in Jupyter notebooks

. 7 Row A B C D
e Via lulia.jl
* Ju stands for Julia (r for R). Bool Int64? String? Char?
1 true 1 missing a
- missing datatype is built-in in Julia o
. . 2 false 2 b missing
e distinct fromnothing
3 true missing c C

* | plot using Python’s matplotlib
* Via PyPlot.jl
* There’s also Makie.jl
 ..and Gadfly.jl, which is ggplot-inspired

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

https://github.com/bkamins/Julia-DataFrames-Tutorial
https://github.com/bkamins/Julia-DataFrames-Tutorial/blob/master/04_loadsave.ipynb

Julia likes

* Unicode variable names & operators

Easy input of LaTeX & Unicode names: -------—- - omommmmmmme - julia> \partial<tab>
Plus reverse lookup: s 4
"§" can be typed by \delta<tab> jutia> 0

Some code is read much more than it is written. There, readability counts!
For throwaway / exploratory code, not worth the slower input though
Real-life example from my own code:

izh() = begin
Conductance-based synaptic current
I_syn = ge*(v-Ee) + gi*(v-Ei)

Izhikevich 2D system
A.v = (kx(v-vi)*(v-vt) - u - I_syn) / C # Membrane potential
A.u = ax(bx(v-vz) - u) # Adaptation current
Synaptic conductance decay
A.ge = -8e / T # (ge is sum over all exc synapses)
Agi = -gi / T
end
has_spiked() = (v 2 Vs) «---o-oooooe- Compact operator :)
on_self_spike() = begin
V = Vg
u += Au

end Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

Julia likes

« Community * Inspectability
* Discourse forum & Slack @edit to jump to source code of
e Scientists anything... amazing
 Contribute to ecosystem « dcode_native to see cpu instructions
(open source, build upon others) « ? for documentation
* As close-to-the-metal as you like * Dependency management
* Look under the hood. Understand why * Single, ergonomic tool (¢ Python)
something is slow/fast, and how it works « Pke.jl, with *]° REPL mode
 “data structures + functions” design style * Easy reproducibility via thin environments

* Project.toml & Manifest.toml

* Not just for Julia code, for e.g. data too!

e Decoupling is good
e Versus: when you’re designing software in Python,

you’re often pushed towards a coupled OOP design, with e Artifacts.jl, DataDeps.jl
inheritance * And for binaries: Yggdrasil & BinaryBuilder.jl
¢ Keyword argument syntax sugar: e Macro’s
®* options = [some object] * Lisp-like. ‘Code as data’
simulate(x, options = options) # Python
simulate(x; options) # Julia

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

Julia annoyances

e Package startup time ®) (“time-to-first-plot”)
* Language developers are working hard this year to improve this

* No winning plotting package yet
* ‘name.<tab>" autocompletion (APl discovery) not as good as Python

* Getting floats to print with lower precision is way more difficult than it
should be for new users

* Traits / interfaces (lack of)

* Error handling is underdeveloped / under-practiced
(“—> silent fails & crashes”)

* See also:
 yuri.is/not-julia
e danluu.com/julialang
e viralinstruction.com/posts/badjulia

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

https://twitter.com/alexisgallagher/status/1483487864843214853
https://yuri.is/not-julia/
https://danluu.com/julialang/
https://viralinstruction.com/posts/badjulia/

“Julia has a correctness problem”

* (i.e. there’s nasty hidden bugs everywhere)

* Not true for Base Julia:
* every line there is pored over by many language developers

e automatic test coverage is very comprehensive

* For other people’s packages:

* Not a problem in my experience.
* But you have to inspect the packages that you use, if they’re not in
Julia Base; and make a value judgement about their quality
* Alot of Julia packages are of very high quality in my experience
* Except for the lack of error checking (of inputs and outputs)

* Julia doesn’t hold your hand:
you gotta know what you’re doing mathematically / numerically / statistically

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

parameters = (

Why did | switch to Julia? c

kK = 0.7 % (nS/mV)
Vi = - 60 ¥ mV
Vi = - 40 ¥ mV
. Advent of Code :) E _ 8'03 e/e 22
Vs = 35 * mV
Vy = - 50 ¥ mV
. . Au = 100 A
* Physical units o
Ee = 0 % mV
Ei = -80 % mV
. T = / % msS
* | could keep using:
* my Jupyter notebook workflow m _ Lilg
* my Matplotlib experience X B Ne6g gi/ N
Be = n e
Agi = 60nS / Nj
At = 0.1ms
T = 10seconds

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

https://adventofcode.com/

julia Tips

Code must be type-inferable (“type-stable”)
e Put everything in (small) functions
* |f using globals: "‘const’, or typed

Read the manual

* Especially the “Performance tips” section, if you’re wondering why
your code is not as fast as promised. Also:

Code excerpt from the
* Ask questions on the forum # JuliaMono homepage.
« discourse.julialang.org # Original by Zygmunt Szpak
e People are very eager to help, and the community managers do a great job ® = kron
eop y €ag P, Y g g J N = "Length(D[i])
e Use Revise.jl (Use all of Tim Holy’s packages actually). ?\{! M/\ = DC’
.) A _ 1y 2 =
This minizes nr. of times you have to restart the Julia session (re: time-to-first-X problem) e, = @SMatrix [1.0; 0.0; 0.0]
* Plus: ez = @Matrix [0.0; 1.0; 0.0]
* If using VS Code, there’s a plugin for Julia. Also: the JuliaMono font :) Example: ---------- o for n = 1:N
e On Windows, use the Julia REPL in the Windows Terminal in(EeX = SVﬁCtOT(L%)][_ .
e Put commonly used snippets in your startup.jl An[1:2,1:2] .= Ai[n][index,:
Y PP Y P An[3:4,3:4] .= Az[n][index,:
* Don’t load unnecessary packages m hom(#[n])
 Julia Base has no real latency (time-to-first-X) problem. m hom (%" [n])
Un (m @ m’)

It’s loading many packages that gets you

* Especially packages that have many dependencies themselves
(looking at you SciML ecosystem :P) Bn

* Do you really need this package?
Can you just implement it yourself / copy the relevant part?

[(e: ® m') (e2 ® m")
Oxun * An % Oxun'

0' ¥ Bnh * O

inv(Zn)

Q
x
(=]
=]
1 | | A | B | THR

Learn by doing end
* Like by doing some Advent of Code puzzles!

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

https://discourse.julialang.org/
https://juliamono.netlify.app/

Should you use Julia?

* Do you ‘just’ need data analysis, automation,
and pretty, customized plots?

* Then, no

* Or do you also write custom numeric algorithms / simulations?
* Then, yes :)
e ..Unless you already know Matlab and don’t have the time
 ..Plus, Python and R have huge ecosystems of packages that might

already do your custom thing

* A concrete example in computational neuroscience: Brian Python package for
spiking neural network simulations (core written in C++)

e Also, Python has Numba for JIT-optimization of hot inner loops
(numba.pydata.org). That might be enough for your use case

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

https://numba.pydata.org/

Links

“Seven Lines of Julia”: examples of Julia, in different applications.
* “What cool thing can you do in seven lines of code?”

tfiers.github.io/phd
* made with JupyterBook
e auto-built and -published with GitHub Actions on GitHub Pages

github.com/schluppeck/ng-data-club
e Repo of the Lunchtime data club

Discussion of these slides on Julia Discourse

* (woah meta)

Julia for Scientists - Tomas Fiers - Dec 2022 - v2.1

https://discourse.julialang.org/t/seven-lines-of-julia-examples-sought/50416?filter=summary
https://tfiers.github.io/phd
https://jupyterbook.org/
https://jupyterbook.org/en/stable/publish/gh-pages.html
https://github.com/schluppeck/ng-data-club
https://discourse.julialang.org/t/julia-for-research-summary-slides/91397

