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A Technique for Drawing Directed Graphs 
Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gem-Phong Vo 

Abstract- We describe a four-pass algorithm for drawing 
directed graphs. The first pass finds an optimal rank assignment 
using a network simplex algorithm. The second pass sets the 
vertex order within ranks by an iterative heuristic incorporat- 
ing a novel weight function and local transpositions to reduce 
crossings. The third pass finds optimal coordinates for nodes by 
constructing and ranking an auxiliary graph. The fourth pass 
makes splines to draw edges. The algorithm makes good drawings 
and runs fast. 

Index Tenns-Directed graph layout algorithm, network sim- 
plex. 

I. INTRODUCTION 
RAWING abstract graphs is a topic of ongoing research, D having such applications as visualization of programs and 

data structures and document preparation. This paper describes 
a technique for drawing directed graphs in the plane. The 
goal is to make high-quality drawings quickly enough for 
interactive use. These algorithms are the basis of a practical 
implementation [l]. 

A. Aesthetic Criteria 

To make drawings, it helps to assume that a directed 
graph has an overall flow or direction, such as top to bottom 
(assumed in most examples in this paper) or left to right. Such 
flows can be seen in handmade drawings of finite automata 
where the flow is from initial to terminal states, or in data flow 
graphs from input to output. This observation has motivated 
a collection of methods for drawing digraphs based on the 
following aesthetic principles: 
Al: Expose hierarchical structure in the graph. In particular, 
aim edges in the same general direction if possible. This aids 
finding directed paths and highlights source and sink nodes. 
A2: Avoid visual anomalies that do not convey information 
about the underlying graph. For example, avoid edge crossings 
and sharp bends. 
A3: Keep edges short. This makes it easier to find related 
nodes and contributes to A2. 
A4: Favor symmetry and balance. This aesthetic has a sec- 
ondary role in a few places in our algorithm. 
There is no way to optimize all these aesthetics simultane- 
ously. For instance, a placement of nodes and orientation of 
edges preferred according to A1 may force edge crossings 
that are undesirable according to A2. What is more, it is 
computationally intractable to minimize edge crossings or to 
find subgraphs having symmetry. We therefore make some 
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1. procedure draw-grapho 

2. begin 
3. ranko; 

4. ordering(); 
5. position(); 

6. make-splineso; 
7. end 

Fig. 1. Main algorithm. 

simplifying assumptions and rely on heuristics that run quickly 
and make good layouts in common cases. For a survey of 
other aesthetic principles, we refer the reader to the annotated 
bibliography on graph-drawing algorithms [ 2 ] .  

B. Problem Description 
The input to the drawing algorithm is an attributed graph 

G = (V, E )  possibly containing loops and multiedges. We 
assume that G is connected, as each connected component 
can be laid out separately. The attributes are: 

zs i ze(v) ,  yszze(v): Size of bounding box of a node v. 
nodesep(G): Minimum horizontal separation be- 

tween node boxes. 
ranksep(G): Minimum vertical separation between 

node boxes. 
w(e):  Weight of an edge e, usually 1. The 

weight signifies the edge's importance, 
which translates to keeping the edge 
short and vertically aligned. 

The algorithm assigns each node w to a rectangle in 
the plane with the center point (z(w),y(w)) and assigns 
each edge e to a sequence of B-spline control points 
(zo(e) ,yo(e)) ,  . . . , (s,(e), y,(e)). Although the unit of these 
dimensions is not specified, it is convenient to use the 
traditional coordinate system of 72 units per inch in an 
implementation. The layout is generally guided by the aesthetic 
criteria Al-A4, and specifically by the graph attributes. The 
details of these constraints will be supplied in the following 
sections. 

The user can further constrain the layout in a way that 
is useful for drawing graphs that have time-lines or for 
highlighting source and sink nodes. The initial pass of the 
algorithm described in the next section assigns nodes to 
discrete ranks 0 . . . Max-rank. Nodes in the same rank 
receive the same Y coordinate value. The user may provide 
sets Smax,Smin,S0,S1, . . . SI, & V. These are (possibly 

1 

0098-5589/93$03.00 0 1993 IEEE 

___ ~~~ 



215 GANSNER et al.: A TECHNIQUE FOR DRAWING DIRECTED GRAPHS 

(a) 
digraph world-dynamics { 

size=”6,6”; 
S8 -> 9; S24 -> 27; S24 -> 25; S1 -> 10; S1 -> 2; S35 -> 36; 
S35 -> 43; S30 -> 31; S30 -> 33; 9 -> 42; 9 -> T1; 25 -> T1; 
25 -> 26; 27 -> T24; 2 -> 3; 2 -> 16; 2 -> 17; 2 -> T1; 2 -> 18; 
10 -> 11; 10 -> 14; 10 -> T1; 10 -> 13; 10 -> 12; 
31 -> T1; 31 -> 32; 33 -> T30; 33 -> 34; 42 -> 4; 26 -> 4; 
3 -> 4; 16 -> 15; 17 -> 19; 18 -> 29; 11 -> 4; 14 -> 15; 
37 -> 39; 37 -> 41; 37 -> 38; 37 -> 40; 13 -> 19; 12 -> 29; 
43 -> 38; 43 -> 40; 36 -> 19; 32 -> 23; 34 -> 29; 39 -> 15; 
41 -> 29; 38 -> 4; 40 -> 19; 4 -> 5; 19 -> 21; 19 -> 20; 
19 -> 28; 5 -> 6 ;  5 -> T35; 5 -> 23; 21 -> 22; 20 -> 15; 28 -> 29; 
6 -> I ;  15 -> T1; 22 -> 23; 22 -> T35; 29 -> T30; 7 -> T8; 
23 -> T24; 23 -> T1; 

(b) 
Fig. 2. (a) 1.11 s user time on a Sun-4/280. (b) Graph file listing. 

empty) sets of nodes that must be placed together on the 
maximum, minimum, or same rank, respectively. 

C. Related Work 
Drawing digraphs using an iterative method to reduce edge 

crossing was first studied by Warfield [3], and similar methods 
were discovered by Carpano [4] and Sugiyama, Tagawa, and 
Toda [5]. Di Battista and Tamassia describe an algorithm for 
embedding planar acyclic digraphs such that all edges flow in 
the same direction [6] .  We view our work as building on the 
approach of Warfield et al. 

D. Overview 

The graph-drawing algorithm has four passes, as shown in 
Fig. 1. The first pass places the nodes in discrete ranks. The 
second sets the order of nodes within ranks to avoid edge 
crossings. The third sets the actual layout coordinates of nodes. 
The final pass finds the spline control points for edges. 

Our contributions are 1) an efficient way of ranking the 
nodes using a network simplex algorithm, 2) improved heuris- 

tics to reduce edge crossings, 3) a method for computing 
the node coordinates as a rank assignment problem, and 4) 
a method for setting spline control points. Techniques 1) and 
2) were first implemented in the graph drawing program dag 
, described in [l]. Further work, especially 3) and 4), have 
been incorporated in dot [7], a successor to dag. Figs. 2 and 
3 are samples of dot’s output with the corresponding input 
files. 

11. OPTIMAL RANK ASSIGNMENT 

The first pass assigns each node U E G  to an integer rank 
X(v) consistent with its edges. This means that for every e = 
( U ,  w) E E ,  Z(e) 2 6 ( e ) ,  where the length Z(e) of e = ( U ,  w) 
is defined as X(w) - X(v), and 6(e)  represents some given 
minimum length constraint. 6(e) is usually 1, but can take 
any nonnegative integer value. 6 ( e )  may be set internally for 
technical reasons as described shortly or externally if the user 
wants to adjust the rank assignment. For this pass, each of the 
nonempty sets S,,, Smin, SO, . . , SI, is temporarily merged 
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digraph shells { 
size-"7,8 " ; 
node [fontsize=24, shape = plaintext]; 
1972 -> 1976 -> 1978 -> 1980 -> 1982 -> 1984 -> 1986 -> 1988 

-> 1990 -> future; 

node [fontsize-20, shape = box]; 
{ rank - same; 1976 Mashey Bourne; 1 
{ rank = same; 1978 Formshell csh; 1 
rank - same; 1980 esh vsh; 1 

{ rank = same; 1982 ksh "System-V"; ) 
{ rank = same; 1984 v9sh tcsh; 1 
{ rank = same; 1986 "ksh-in; } 
{ rank = same; 1988 KornShell Perl rc; 1 
{ rank = same; 1990 tcl Bash; 1 
{ rank = same; "future" POSIX "ksh-POSIX"; ) 

Thompson -> {Mashey Bourne cshl; csh -> tcsh; 
Bourne -> [ksh esh vsh "System-V" v9sh); v9sh -> rc; 

{esh vsh Formshell csh) -> ksh; 
{KornShell "System-V"1 -> POSIX; 
ksh -> "ksh-i" -> KornShell -> "ksh-POSIX"; 
Bourne -> Formshell; 

{Bourne "ksh-i" KornShell) -> Bash; 

/ *  'invisible' edges to adjust node placement * /  
edge [ style-invi s I ; 
1984 -> v9sh -> tcsh ; 1988 -> rc -> KornShell; 
Formshell -> csh; KornShell -> Perl; 

1 
(b) 

Fig. 3. (a) 0.50 s user time of 0.50 s on a Sun-4/280. (b) Graph file listing. 

into one node. In addition, loops are ignored, and multiple 
edges are merged into one edge whose weight is the sum of 
the weights of the merged edges. For efficiency, leaf nodes that 
are not a member of one of the above sets may be ignored, 
since the rank of a leaf is trivially determined in an optimal 
ranking. 

A. Making the Graph Acyclic 

A graph must be to have a consistent rank as- 

signment. Because the input graph may contain cycles, a 
preprocessing step detects cycles and breaks them by reversing 
certain edges [8]. Of course, these edges are only reversed 
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internally; arrowheads in the drawing show the original di- 
rection. A useful procedure for breaking cycles is based on 
depth-first search. Edges are searched in the “natural order” 
of the graph input, starting from some source or sink nodes 
if any exist. Depth-first search partitions edges into two sets: 
tree edges and nontree edges 191. The tree defines a partial 
order on nodes. Given this partial order, the nontree edges 
further partition into three sets: cross edges, forward edges, 
and back edges. Cross edges connect unrelated nodes in the 
partial order. Forward edges connect a node to some of its 
descendants. Back edges connect a descendant to some of its 
ancestors. It is clear that adding forward and cross edges to 
the partial order does not create cycles. Because reversing back 
edges makes them into forward edges, all cycles are broken 
by this procedure. 

It seems reasonable to try to reverse a smaller or even 
minimal set of edges. One difficulty is that finding a min- 
imal set (the “feedback arc set” problem) is NP-complete 
[lo], [ l l ] .  More important, this would probably not im- 
prove the drawings. We implemented a heuristic to reverse 
edges that participate in many cycles. The heuristic takes 
one nontrivial strongly connected component at a time, in an 
arbitrary order. With each component, it counts the number 
of times each edge forms a cycle in a depth-first traversal. 
An edge with a maximal count is reversed. This is repeated 
until there are no more nontrivial strongly connected compo- 
nents. 

Experiments with this heuristic show that most directed 
graphs arising from practical applications have a natural edge 
direction even when they contain cycles. Graph input usually 
reflects this natural direction. In fact, graphs are often created 
by a graph search performed by some other tool. Reversing 
an inappropriate edge disturbs the drawing. For instance, even 
when a procedure call graph has cycles, one still expects to 
see top-level functions near the top of the drawing, and not 
somewhere in the middle. From the standpoint of stability, the 
depth-first, cycle-breaking heuristic seems preferable. It also 
makes more informative drawings than would be obtained by 
collapsing all the nodes in a cycle into one node, or placing 
the nodes in a cycle on the same rank, or duplicating one of 
the nodes in the cycle, as various researchers have suggested 

Another detail is that the nodes representing S,,, and 
Smin must always have the maximum and minimum rank 
assignments. This property is ensured by reversing out-edges 
of S,,, and in-edges of Smin. Also, for all nodes U with no 
in-edge, we make a temporary edge (&in, w) with 6 = 0, and 
for all nodes v with no out-edge, we make a temporary edge 
(w,SmaX) with 15 = 0. Thus, A(&;,) 5 X(w) 5 X(S,,,) for 
all U.  

[41, ~ 1 ,  151. 

B. Problem Definition 
Principle A3 prescribes making short edges. Besides making 

better layouts, short edges reduce the running time of later 
passes whose time depends on the total edge length. So it is 
desirable to find an optimal node ranking, i.e., one for which 
the sum of all the weighted edge lengths in minimal. 

Finding an optimal ranking can be reformulated as the 
following integer program: 

min w(71, w)(x(w) - x(v)) 

subject to : X(w) - X(w) 2 S(w, w) V (w, w) 6 E 
The weight function w and the minimum length function 6 as 
previously described map the edge set E into the nonnegative 
rational numbers and the nonnegative integers, respectively. 

There are various ways to solve this integer program in 
polynomial time. One method is to solve the equivalent linear 
program, then transform the solution to an integer one in 
polynomial time. Another involves converting the optimal 
rank assignment problem to an equivalent min-cost flow 
or circulation problem, for which there are polynomial-time 
algorithms (see [13] and its references). As the constraint 
matrix is totally unimodular, the problem can also be solved, 
though not necessarily in polynomial time, by applying the 
simplex method. A more complete discussion of these and 
other techniques will be reported in [14]. 

( v , ~ )  E 

C.  Network Simplex 

Here, we describe a simple approach to the problem based 
on a network simplex formulation [15]. Although its time 
complexity has not been proven polynomial, in practice it takes 
few iterations and runs quickly. 

We begin with a few definitions and observations. A feasible 
ranking is one satisfying the length constraints Z(e) 2 6 ( e )  
for all e. Given any ranking, not necessarily feasible, the slack 
of an edge is the difference of its length and its minimum 
length. Thus, a ranking is feasible if the slack of every edge 
is nonnegative. An edge is tight if its slack is zero. 

A spanning tree of a graph induces a ranking, or rather, 
a family of equivalent rankings. (Note that the spanning tree 
is on the underlying unrooted undirected graph, and is not 
necessarily a directed tree.) This ranking is generated by 
picking an initial node and assigning it a rank. Then, for each 
node adjacent in the spanning tree to a ranked node, assign 
it the rank of the adjacent node, incremented or decremented 
by the minimum length of the connecting edge, depending 
on whether it is the head or tail of the connecting edge. This 
process is continued until all nodes are ranked. A spanning tree 
is feasible if it induces a feasible ranking. By construction, all 
edges in the feasible tree are tight. 

Given a feasible spanning tree, we can associate an integer 
cut value with each tree edge as follows. If the tree edge is 
deleted, the tree breaks into two connected components, the tail 
component containing the tail node of the edge, and the head 
component containing the head node. The cut value is defined 
as the sum of the weights of all edges from the tail component 
to the head component, including the tree edge, minus the sum 
of the weights of all edges from the head component to the 
tail component. 

Typically (but not always because of degeneracy), a negative 
cut value indicates that the weighted edge length sum could 
be reduced by lengthening the tree edge as much as possible, 
until one of the head component to tail component edges 
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1. procedure rank() 

2. feasible-tree(); 

3. 

4. f = enter-edge(e); 

5. exchange(e,f); 

6. end 

7. normalize(); 

8. balance(); 

9. end 

while (e = leave-edge()) # nil do 

Fig. 4. Network simplex. 

becomes tight. This corresponds to replacing the tree edge 
in the spanning tree with the newly tight edge, obtaining a 
new feasible spanning tree. It is also simple to see that an 
optimal ranking can be used to generate another optimal rank- 
ing induced by a feasible spanning tree. These observations 
are the key to solving the ranking problem in a graphical 
rather than algebraic context. Tree edges with negative cut 
values are replaced by appropriate nontree edges, until all tree 
edges have nonnegative cut values. To guarantee termination, 
the implementation should employ an anticycling technique, 
although we have never found this necessary in practice. The 
resulting spanning tree corresponds to an optimal ranking. For 
further discussion of the termination of the network simplex 
algorithm and optimality of the result, the interested reader is 
referred to the literature [14]-[16]. 

Fig. 4. describes our version of the network simplex algo- 
rithm. 

Remarks on Fig. 4 
2: The function f e a s i b l e - t r e e  constructs an initial 

feasible spanning tree. This procedure is described more fully 
shortly. The simplex method starts with a feasible solution 
and maintains this invariant. 

3: leave-edge  returns a tree edge with a negative cut 
value, or nil if there is none, meaning the solution is optimal. 
Any edge with a negative cut value may be selected as the 
edge to remove. 

4: en te r - edge  finds a nontree edge to replace e .  This is 
done by breaking the edge e, which divides the tree into a head 
and tail component. All edges going from the head component 
to the tail are considered, with an edge of minimum slack being 
chosen. This is necessary to maintain feasibility. 

5: The edges are exchanged, updating the tree and its cut 
values. 

7: The solution is normalized by setting the least rank to 
zero. 

8: Nodes having equal in- and out-edge weights and multi- 
ple feasible ranks are moved to a feasible rank with the fewest 
nodes. The purpose is to reduce crowding and improve the 
aspect ratio of the drawing, following principle A4. The adjust- 
ment does not change the cost of the rank assignment. Nodes 
are adjusted in a greedy fashion, which works sufficiently well. 
Globally balancing ranks is considered in a forthcoming paper 
~ 4 1 .  

1. procedure feasible-tree0 

2. initJank(); 

3. 

4. 

5. 

6. delta = slack(e); 

7. 

8. 

9. end 

while tight-tree0 < IV I do 

e = a non-tree edge incident on the tree 

with a minimal amount of slack; 

if incident node is e . W  then delta = delta; 

for v in Tree do v .rank = v .rank + del% 

10. init-cutvalues(); 

11. end 
Fig. 5. Finding an initial feasible tree. 

Fig. 5 shows how to construct an initial feasible tree. 
Remarks on Fig. 5 
2: An initial feasible ranking is computed. For brevity, 

i n i t - r a n k  is not given here, Our version keeps nodes in 
a queue. Nodes are placed in the queue when they have no 
unscanned in-edges. As nodes are taken off the queue, they are 
assigned the least rank that satisfies their in-edges, and their 
out-edges are marked as scanned. In the simplest case, where 
S = 1 for all edges, this corresponds to viewing the graph as 
a poset and assigning the minimal elements to rank 0. These 
nodes are removed from the poset and the new set of minimal 
elements are assigned rank 1, etc. 

3: Function t i g h t - t r e e  finds a maximal tree of tight 
edges containing some fixed node and returns the number of 
nodes in the tree. Note that such a maximal tree is just a 
spanning tree for the subgraph induced by all nodes reachable 
from the fixed node in the underlying undirected graph using 
only tight edges. In particular, all such trees have the same 
number of nodes. 

4-8: This finds an edge to a nontree node that is adjacent 
to the tree, and adjusts the ranks of the tree nodes to make 
this edge tight. As the edge was picked to have minimal 
slack, the resulting ranking is still feasible. Thus, on every 
iteration, the maximal tight tree gains at least one node, and the 
algorithm eventually terminates with a feasible spanning tree. 
This technique is essentially the one described by Sugiyama 
et a1 [5]. 

10: The i n i t - c u t v a l u e s  function computes the cut val- 
ues of the tree edges. For each tree edge, this is computed by 
marking the nodes as belonging to the head or tail component, 
and then performing the sum of the signed weights of all 
edges whose head and tail are in different components, the 
sign being negative for those edges going from the head to 
the tail component. 

A small example of running the network simplex algorithm 
is shown in Fig. 6. Nontree edges are dotted, and all edges have 
weight 1. In (a), the graph is shown after the initial ranking, 
with cut values as indicated. For instance, the cut value of 
edge (9, h) is -1, corresponding to the weight of edge (9, h) 
(from the tail component to the head component) minus the 
weights of edges (a, e) and (a, f )  (from the head component 
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(a) (b) 
Fig. 6. Finding an optimal feasible tree. 

to the tail component). In (b), the edge ( g, h) with a negative 
cut value has been replaced by the nontree edge (a, e), with 
the new cut values shown. Because they are all nonnegative, 
the solution is optimal and the algorithm terminates. 

D. Implementation Details 

Versions of the network simplex algorithm are well under- 
stood and there are results in the literature to help tune an 
implementation [15]. We feel, however, it is worth pointing 
out several specific points to prospective implementors. These 
optimizations are useful here, but become crucial when we 
use the network simplex again in Section IV, applied to much 
larger graphs. 

Computing the initial feasible tree and initial cut values 
is frequently a significant proportion of the cost in solving 
the network simplex algorithm. For many graphs in practice, 
the initial solution is close to optimal, requiring just a few 
iterations to reach the final solution. In a naive implementation, 
initial cut values can be found by taking every tree edge in 
turn, breaking it, labeling each node according to whether it 
belongs to the head or tail component, and performing the 
sum. This takes O ( V E )  time. 

To reduce this cost, we note that the cut values can be 
computed using information local to an edge if the search 
is ordered from the leaves of the feasible tree inward. It is 
trivial to compute the cut value of a tree edge with one of its 
endpoints a leaf in the tree, since either the head or the tail 
component consists of a single node. Now, assuming the cut 
values are known for all the edges incident on a given node 
except one, the cut value of the remaining edge is the sum of 
the known cut values plus a term dependent only on the edges 
incident to the given node. 

We illustrate this computation in Fig. 7 in the case where 
two tree edges, with known cut values, join a third, with the 
shown orientations. The other cases are handled similarly. We 
assume the cut values of (u,w) and (v ,w)  are known. The 
edges labeled with capital letters represent the set of all non- 
tree edges with the given direction and whose heads and tails 
belong to the components shown. The cut values of (u ,w) 

Fig. 7. Incrementally computing cut values. 

and (w, w) are given by 

c ( ~ , ~ )  = W ( U ,  W) + A + C + F - B - E - D 
and 

c ( ~ , ~ )  =w(u ,  W) + L + I + D - K - J - C 

respectively. The cut value of (w,x) is then 

an expression involving only local edge information and the 
known cut values. By thus computing cut values incrementally, 
we can ensure that every edge is examined only twice. This 
greatly reduces the time spent computing initial cut values. 

Another valuable optimization, similar to a technique de- 
scribed in [15], is to perform a postorder traversal of the 
tree, starting from some fixed root node wrOot, and labeling 
each node w with its postorder traversal number Zim(w), the 
least number Zow(v) of any descendant in the search, and 
the edge parent(v) by which the node was reached (see Fig. 
8). This provides an inexpensive way to test whether a node 
lies in the head or tail component of a tree edge, and thus 
whether a nontree edge crosses between the two components. 
For example, if e = (u,w) is a tree edge and w,,,t is in 
the head component of the edge (i.e., Zim(u) < lim(w)), 
then a node w is in the tail component of e if and only if 
low(u) 5 l im(w)  5 lim(u). These numbers can also be 
used to update the tree efficiently during the network simplex 
iterations. If f = ( w , x )  is the entering edge, the only edges 
whose cut values must be adjusted are those in the path 
connecting w and x in the tree. This path is determined by 
following the parent edges back from w and x until the 
least common ancestor is reached, i.e., the first node 1 such 

- 1 I 
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Fig. 8. Postorder traversal with nodes labeled by (low, lim). 

that low(1) 5 Zim(w),lim(z) 5 lim(l). Of course, these 
postorder parameters must also be adjusted when exchanging 
tree edges, but only for nodes below 1. 

The network simplex is also very sensitive to the choice 
of the negative edge to replace. We observed that searching 
cyclically through all the tree edges, instead of searching from 
the beginning of the list of tree edges every time, can save 
many iterations. 

111. VERTEX ORDERING WITHIN RANKS 
After rank assignment, edges between nodes more than one 

rank apart are replaced by chains of unit length edges between 
temporary or “virtual” nodes. The virtual nodes are placed on 
the intermediate ranks, converting the original graph into one 
whose edges connect only nodes on adjacent ranks. Self-edges 
are ignored in this pass, and multiedges are merged as in the 
previous pass. 

The vertex order within ranks determines the edge crossings 
in the layout, thus a good ordering is one with few crossings. 
Heuristics are appropriate since minimizing edge crossings in 
layouts of ranked graphs is NP-complete, even for only two 
ranks [lo]. 

Several important heuristics for reducing edge crossings 
in ranked graphs are based on the following scheme first 
suggested by Warfield [3]. An initial ordering within each rank 
is computed. Then a sequence of iterations is performed to try 
to improve the orderings. Each iteration traverses from the first 
rank to the last one, or vice versa. When visiting a rank, each of 
its vertices is assigned a weight based on the relative positions 
of its incident vertices on the preceding rank. Then the vertices 
in the rank are re-ordered by sorting on these weights. 

Two common vertex weighting methods are the barycenter 
function [5] and the median function [17]. Let U be a vertex 
and P the list of positions of its incident vertices on the 
appropriate adjacent rank. Note that the position of an adjacent 
node is only its ordinal number in the current ordering. The 
barycenter method defines the weight of v as the average of 
elements in P. The median method defines the weight of U as 
the median of elements in P. When the number of elements in 
P is even, there are two medians. This gives rise to two median 
methods: always using the left median, and always using 

1. procedure ordering() 

2. order = init_order(); 

3. best=order; 

4. 

5. wmedian(0rder.i); 

6. hanspose(0rder); 

7. 

8. best = order; 

9. end 

for i = 0 to Max-iterations do 

if crossing(0rder) < crossing(best) then 

10. returnbesr 

11. end 

Fig. 9. Vertex-ordering algorithm. 

the right median. The median method consistently performs 
better than the barycenter method and has a slight theoretical 
advantage since Eades and Wormald [17] have shown that the 
median layout of a two-level graph has no more than three 
times the minimum number of crossings. No such bound is 
known for the barycenter method. 

Our node-ordering heuristic is a refinement of the median 
method with two major innovations. First, when there are two 
median values, we use an interpolated value biased toward 
the side where vertices are more closely packed. The second 
improvement uses an additional heuristic to reduce obvious 
crossings after the vertices have been sorted, transforming 
a given ordering to one that is locally optimal with respect 
to transposition of adjacent vertices. It typically provides an 
additional 2650% reduction in edge crossings. We refer the 
reader to [l] for detailed statistics. 

Fig. 9 shows the node-ordering algorithm. 
Remarks on Fig. 9 
2: i n i t - o r d e r  initially orders the nodes in each rank. 

This may be done by a depth-first or breadth-first search 
starting with vertices of minimum rank. Vertices are assigned 
positions in their ranks in left-to-right order as the search 
progresses. This strategy ensures that the initial ordering of a 
tree has no crossing. This is important because such crossings 
are obvious, easily avoided “mistakes.” 

4-9: M a x - i t e r a t i o n s  is the maximum number of iter- 
ations. We set M a x - i t e r a t i o n s  to 24. At each iteration, if 
the number of crossings improves, the new ordering is saved. 
In an actual implementation, one might prefer an adaptive 
strategy that iterates as long as the solution has improved at 
least a few percent over the last several iterations.wmedian 
reorders the nodes within each rank based on the weighted 
median heuristic. t r a n s p o s e  repeatedly exchanges adjacent 
vertices on the same rank if this decreases the number of cross- 
ings. Both of these functions are described more completely 
as follows. 

The weighted median heuristic is shown in Fig. 10. Depend- 
ing on the parity of the current iteration number, the ranks 
are traversed from top to bottom or from bottom to top. TO 
simplify the presentation, Fig. 10 only shows one direction in 
detail. 
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procedure wmedian(order,iter) 

if iter mad 2 == 0 then 

for r = 1 to Max-rank do 

for v in &[r] do 

median[vl = median-value(v,r-1); 

sort(orde~jrl,median); 
end 

e l s e . . .  

endif 

end 

procedure median-value(v,adj-rank) 

P = adjqosition(v,adj-rank); 

m = IPlD; 
if IPI=Othen 

return -1.0; 

elseif IP I mod 2 == 1 then 

return P[m]; 

elseif IP I = 2 then 

return P[OI + P[11)/2; 
else 

left = P[m-1] - P(03; 

right = P[ IP 1-13 - P[m]; 

return P[m-lI%ght + P[m]*left)/(left+right); 

endif 

end 

Fig. 10. The weighted median heuristic. 

Remarks on Fig. 10 
1-10: In the forward traversal of the ranks, the main loop 

starts at rank 1 and ends at the maximum rank. At each rank 
a vertex is assigned a median based on the adjacent vertices 
on the previous rank. Then, the vertices in the rank are sorted 
by their medians. An important consideration is what to do 
with vertices that have no adjacent vertices on the previous 
rank. In our implementation such vertices are left fixed in 
their current positions with nonfixed vertices sorted into the 
remaining positions. 

12-26: The median value of a vertex is defined as the 
median position of the adjacent vertices if that is uniquely 
defined. Otherwise, it is interpolated between the two median 
positions using a measure of tightness. Generally, the weighted 
median is biased toward the side where vertices are more 
closely packed. 

13: The ad j - p o s i t i o n  function returns an ordered array 
of the present positions of the nodes adjacent to v in the given 
adjacent rank. 

~ 
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2. 

3. 

4. 

5 .  
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7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

procedure transpose(rank) 

improved = True; 

while improved do 

improved = False, 
for r = 0 to Max-rank do 

for i = 0 to Irank[rl 1-2 do 

v = rank[r][i]; 

w = rank[r][i+l]; 

if crossing(v,w) > crossing(w,v) then 

improved = True; 

exchange(rank[rl [il ,rank[rl [i+ll ); 

endif 

end 

end 

end 

end 
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Fig. 11. The transposition heuristic for reducing edge crossings. 

15-16: Nodes with no adjacent vertices are given a median 
value of -1. This is used within t h e s o r t  function to indicate 
that these nodes should be left in their current positions. 

Fig. 11 shows the transposition heuristic. 
Remarks on Fig. 11 
3-15: This is the main loop that iterates as long as the 

number of edge crossings can be reduced by transpositions. 
As in the loop in the o r d e r i n g  function, an adaptive 
strategy could be applied here to terminate the loop once the 
improvement is a sufficiently small fraction of the number of 
crossings. 

7-12: Each adjacent pair of vertices is examined. Their 
order is switched if this reduces the number of crossings. The 
function c r o s s i n g  (v,w) simply counts the number of 
edge crossings if v appears to the left of w in their rank. 

One small point is that the original graph may have edges 
between nodes on the same rank. We call these “flat edges.” 
Following criterion A l ,  we try to aim them all in the same 
direction across the rank. If ranks are ordered from top to 
bottom, flat edges generally point from left to right. This 
involves some minor modifications to the vertex ordering 
algorithms. If there are flat edges, their transitive closure is 
computed before finding the vertex order. The vertex order 
must always embed this partial order. In particular, the initial 
order must be consistent with it, and the t r a n s p o s e  and the 
sor t  routines must not exchange nodes against the partial 
order. 

When sorting nodes by medians and transposing adjacent 
nodes, equality can occur when comparing median values or 
number of edge crossings. We have found it helpful, and in 
keeping with the spirit of A4, to flip nodes with equal values 
during the sorting or transposing passes on every other forward 
and backward traversal. 
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One final point is that it is generally worth the extra cost 
to run the vertex ordering algorithm twice: once for an initial 
order determined by starting with vertices of minimal rank 
and searching out-edges, and the second time by starting with 
vertices of maximal rank and searching in-edges. This allows 
one to pick the better of two different solutions. 

IV. NODE  COORDINATE^ 

The third pass sets node coordinates. Previous work has 
treated this as a postprocessing step of the barycenter or 
median methods, making local adjustments to avoid bad 
layouts. Considering node placement as a separate, well- 
defined problem, however, yields better layouts and provides 
a foundation for further extensions, such as trying to set 
the vertex order by methods that are more topological than 
geometric. 

X and Y coordinates are computed in two separate steps. 
The first step assigns X coordinates to all nodes (including 
virtual nodes), subject to the order within ranks already deter- 
mined. The second step assigns Y coordinates, giving the same 
value to nodes in the same rank. The Y coordinate assignment 
maintains the minimum separation ranksep(G) between node 
boxes. Optionally, the separation between adjacent ranks can 
be increased to improve the slope of nearly horizontal edges 
to make them more readable. Because the Y coordinate step 
is straightforward, the remainder of this section deals with X 
coordinates. 

According to the aesthetic principles already mentioned, 
short, straight edges are preferable to long, crooked ones. This 
property of X coordinates is captured in the following integer 
optimization problem: 

min f i (e )w(e) lxw - x,1 

subject to: xb - 2, 2 p(a,  b )  
e=(v,w) 

where a is the left neighbor of b on the same rank and 

xs i ze (a )  + xs ize(b)  
2 

+ nodesep( G )  p ( a , b )  = 

The weight Q ( e ) ,  an internal value distinct from the input 
edge weight U( e ) ,  is defined to favor straightening long edges. 
Since edges between real nodes in adjacent ranks can always 
be drawn as straight lines, it is more important to reduce 
the horizontal distance between virtual nodes, so chains may 
be aligned vertically and thus straightened. The failure to 
straighten long edges can result in a “spaghetti effect”of edges 
having many different slopes. Accordingly, edges are divided 
into three types depending on their end vertices 1) both real 
nodes, 2) one real node and one virtual node, or 3) both virtual 
nodes. If e ,  f, and g are edges of types 1)-3), respectively, 
then O ( e )  5 O(f) 5 R(g). Our implementation uses 1, 
2, and 8. p is a function on pairs of adjacent nodes in the 
same rank giving the minimum separation between their center 
points. 

There are standard techniques for transforming this problem 
into a linear program by the addition of auxiliary variables 
and inequalities to remove the absolute values [15]. As the 

1. procedure xcoordinate() 

2. xcoord = init-xcoardo; 

3. xbest = xcoord; 

4. 

5. medianpos(i,xcoord); 

6. minedge(i,xcoord); 

7. “de(i,xcOord); 

8. minpath(i,xcoord); 

9. packcut(i,xcoord); 

for i = 0 to Max-iterations do 

10. 

11. xbest = xcoord; 

12. end 

13. return xbest; 

14. end 

if xlength(xcoord) < xlength(xbest) then 

Fig. 12. Assigning z coordinates to vertices. 

resulting constraints are totally unimodular, solving the linear 
program with the simplex method produces a solution to the 
integer program. This is easy to program, and the layouts it 
gives are aesthetically pleasing. Unfortunately, the transfor- 
mation increases the size of the simplex matrix from V E  to 
V E  + E2 entries. Graphs of a few dozen nodes and edges 
can be drawn in a few seconds, but larger graphs take much 
longer, and even the amount of memory available becomes 
a limitation. So this is not a completely satisfactory way to 
make layouts, particularly on smaller computers. 

A. Heuristic Approach 

This approach replaces the linear program with a heuristic 
for finding X coordinates. The heuristic finds a “good” initial 
placement, then iteratively tries to improve it by sweeping up 
and down the ranks similar to the vertex ordering algorithm 
described in the previous section. The heuristic is sketched in 
Fig. 12. 

Remarks on Fig. 12 
2: An initial set of coordinates is computed as follows. For 

each rank, the left-most node is assigned coordinate 0. The 
coordinate of the next node is then assigned a value sufficient 
to satisfy the minimal separation from the previous one, and 
so on. Thus, on each rank, nodes are initially packed as far 
left as possible. 

4-12: In each iteration, a collection of heuristics is ap- 
plied to improve the coordinate assignment. If this results 
in an improvement over the previous best assignment, the 
coordinates are saved. The function xlength implements the 
objective function from the above optimization problem. In 
our implementation, Max-iterations is 8. 

5 :  The median heuristic is based on the observation that the 
value 1x - 10 I + Ix - x1 I + . . . + 11 - zi I is minimized when x 
is the median of the x i .  The heuristic assigns each node both 
an upward and downward priority given by the weighted sum 
of its in- and out-edges, respectively. On downward iterations, 
nodes are processed in the downward priority order and placed 
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at the median position of their downward neighbors subject to 
the placement of higher priority nodes and space requirements 
of nodes not yet placed. When there are two medians, taking 
their mean improves symmetry (A4). Upward placement is 
handled similarly. 
6: minedge is similar to medianpos but considers only 

edges between two real nodes. It places the edge, oriented 
vertically, as close as possible to the median of the nodes 
adjacent to either endpoint of the edge. 

7: minnode performs local optimization one node at a 
time, using a queue. Initially all nodes are queued. When 
a node is removed from the queue, it is placed as close as 
possible to the median of all its neighbors (both up and down) 
subject to the separation function p. If the node’s placement is 
changed, its neighbors are requeued if not already in the queue. 
minnode terminates when it achieves a local minimum. 

8: minpath straightens chains of virtual nodes by sequen- 
tially finding subchains that may be assigned the same X 
coordinate. 

9: packcut sweeps the layout from left to right, searching 
for blocks that can be compacted. For each node, if all the 
nodes to the right of it can be shifted to the left by some 
increment without violating any positioning constraints, the 
shift is performed. This is performed by an algorithm that 
operates on a list of nodes sorted in order of X coordinates. 
Although the algorithm is quadratic in the worst case, it 
performs well in practice since at every possible cut it only 
needs to search the nodes in the neighborhood that is affected 
by the candidate shift. 

These heuristics make good layouts quickly, but they are 
complicated to program and the results are sometimes no- 
ticeably imperfect. Further fine tuning is difficult because the 
heuristics begin to interfere with each other. 

B. Optimal Node Placement 

We noticed that the packcut heuristic does not find all 
subgraphs that could be compacted to improve the solution. 
We considered a more general heuristic to search for subgraphs 
and shift them. We then observed that this is very similar to the 
way the network simplex algorithm moves entire subgraphs 
to find an optimal rank assignment (see Section 11). This 
suggested that we apply the network simplex algorithm to find 
optimal node coordinates, using the X coordinates as “ranks.” 

The method involves constructing an auxiliary graph as 
illustrated in Fig. 13. This transformation is the graphical 
analogue of the algebraic transformation mentioned above for 
removing the absolute values from the optimization problem. 
The nodes of the auxiliary graph G‘ are the nodes of the 
original graph G plus, for every edge e in G, there is a new 
node ne. There are two kinds of edges in GI. One edge class 
encodes the cost of the original edges. Every edge e = ( U ,  U) 
in G is replaced by two edges (ne,  U) and (ne,  v) with S = 0 
and w = w(e)R(e). The other class of edges separates nodes 
in the same rank. If U is the left neighbor of 20, then G’ has 
an edge f = e(,,w) with S ( f )  = p(u, w) and w ( f )  = 0. This 
edge forces the nodes to be sufficiently separated but does not 
affect the cost of the layout. 

P 
e 

Fig. 13. An auxiliary graph. 

raphscan mid right 

~ 

Fig. 14. Node ports in a graph. 

We can now consider the level assignment problem on 
GI, which can be solved using the network simplex method. 
Any solution of the positioning problem on G corresponds to 
a solution of the level assignment problem on G’ with the 
same cost. This is achieved by assigning each ne the value 
mzn(x,, xu), using the notation of Fig. 13 and where xu and 
xu are the X coordinates assigned to U and U in G. Conversely, 
any level assignment in G’ induces a valid positioning in G. 
In addition, in an optimal level assignment, one of e, or e, 
must have length 0, and the other has length 12, - x,1. This 
means the cost of an original edge ( U ,  w) in G equals the sum 
of the cost of the two edges e,, e, in G’ and, globally, the two 
solutions have the same cost. Thus, optimality of G’ implies 
optimality for G and solving G‘ gives us a solution for G. 

Using the auxiliary graph also permits the specification of 
“node ports,” or edge endpoints offset in the X direction 
from the center of the node. This makes it possible to draw 
pictures of flat records as shown in Fig. 14. When computing 
coordinates for nodes in these diagrams, the edge lengths must 
include the displacements of the node ports as well as the 
distance between the node center points. Let e = ( U ,  w) be an 
edge and let Au and AV be the specified X displacements 
of the endpoints from the centers of U and U ,  respectively. 
A A < 0 indicates the port is to the left of the vertex’s 
center. Without loss of generality, assume Au 5 AV and let 
de  = AV - Au.de is a constant since it depends only on the 
node ports and not the assignments of U and U. We can now 
solve the same optimization problem, but the cost of edge e is 
now given by R(e)w(e))zu - xu + d e l .  In the auxiliary graph, 
we now set S(eu) = de and S(e,) = 0. We can then extend 
the foregoing argument to show that any positioning for G 
corresponds to a level assignment for G‘; that any optimal 
level assignment for G’ induces a valid positioning for G; 

I I 
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(a) 

Fig. 15. How 

and, in both cases, we have 

for all edges (U,  w) in G, where 1 represents the length function 
in the level assignment on G’. This equation implies that the 
optimal costs of the problems on G and G’ always differ by 
the constant CeEE de.  Therefore, a minimal assignment for 
G’ corresponds to a minimal assignment for G. 

Fig. 15(a) exemplifies how port offsets are translated into 
the 6 value of edges in the auxiliary graph; Fig. 15(b) shows 
how a solution relates to the original edge. 

C. Implementation Details Revisited 

The auxiliary graph is considerably larger than the original 
one. If the original graph has V nodes, E edges, and R 
ranks, the graph with “virtual” nodes added has V + D 
nodes and E + D edges, where D is the number of “virtual 
nodes.” The auxiliary graph then has V + E + 2 0  nodes and 
V+2E +3D - R edges. This graph requires disproportionately 
more time to use the network simplex approach. Consequently, 
the optimizations to the network simplex algorithm described 
at the end of Section I1 are crucial for this pass. 

Further improvement is possible by noting that it is easy 
to construct an initial feasible tree for the auxiliary graph by 
taking advantage of its structure. To construct a feasible tree, 
use all edges connecting nodes in the same rank. For each pair 
of adjacent ranks, pick an edge f = (U, w) between the ranks 
and add both fu and fu in G’ to the tree. This determines the 
relative placement of all the nodes in the two ranks. Finally, 
for every edge e = (w,x) # f between the two ranks, add 
either e, or e, to the tree depending on whether w or x is 
placed leftmost. 

Without these improvements, using network simplex to 
position the nodes took 5-10 times longer. With these im- 
provements, our implementation runs as fast or faster than the 
heuristic implementation. We do not doubt that the heuristic 
in turn could also be tuned further, but the real advantage is 
that the network simplex is much simpler code and produces 
optimal solutions. Also, improvements that could be difficult to 

program into the heuristic can be handled in network simplex. 
As one example, local symmetry (A4) may be improved by 
scanning the graph after network simplex terminates. Tree 
edges whose cut value is exactly 0 identify subgraphs that 
may be adjusted to equalize the slack on their incident edges 
without changing the cost of the solution. This could be used 
to increase symmetry, such as centering a node with an even 
number of descendants. 

V. DRAWING EDGES 

In our method, edges are drawn as spline curves. Other 
graph drawing programs of which we are aware use line 
segments, and most make no attempt to avoid situations where 
line segments overlap unrelated nodes. Although splines are 
more difficult to program, they yield better drawings and help 
to satisfy aesthetic criterion A2. 

In dug, edge splines are made by a collection of heuristics 
that replace the path of line segments between virtual nodes 
with various straight and curved segments, as described in [l]. 
The drawback is that the splines sometimes bend sharply to 
turn inside virtual node boxes or to avoid nearby nodes. The 
virtual nodes end up being visible in the final layout. This 
method does not use the available space effectively. 

It is better to try to find the smoothest curve between two 
points that avoids the “obstacles” of other nodes or splines. 
We can then divide the spline routing algorithm into a top 
half and a bottom half. The top half computes a polygonal 
region of the layout where the spline may be drawn. It calls 
the bottom half to compute the best spline within the region. 
As a final step, the top half resizes virtual nodes according 
to the bounding box of the spline, and clips the spline to the 
boundaries of the endpoint node shapes. 

A region and its spline are illustrated in Fig. 16.’ The 
associated edge is from “Interdata” to “Unix TS 3.0.” More 
formally, we draw splines by creating and solving instances 
of the following subproblem. Given Bo,. . . , B,, q, 04, T,  Or 
where B, are boxes parallel to the coordinate axes, such that 

‘Graph data courtesy of Ian F. Darwin, SoftQuad Inc., and Geoffrey 
Collyer, Software Tool & Die. 
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Fig. 16. Region for a spline (0.48 s user time Sun 4/280). 

Bi has edges in common with Bi-1 and Bi+l; q and r are 
points on or inside the first and last box respectively, find 
SO,. . . , sn and BBo, . . . , BB,, where si are the control points 
of a piecewise Bezier curve and BBi are boxes parallel to the 
coordinate axes. The curve must have q and T as its endpoints. 
OP and & are optional; if they are specified, then the curve must 
have the given slope at the corresponding endpoint. The BBi 
correspond to the Bi and are the smallest boxes that contain 
the generated splines. 

We next describe the two parts of the algorithm. 

A. Finding the Region 

There are three kinds of edges in the drawing: edges 
between nodes on different ranks, flat edges between different 
nodes on the same rank, and self-edges or loops. 

Different Ranks: In practice, most edges connect nodes on 
different ranks. The region for this kind of edge has a few 
boxes near its tail port, then an alternating sequence of inter- 
rank boxes and virtual node boxes, and finally a few boxes 
near the head port. The tail and head port boxes route the 
spline to the appropriate side of the node. 

To curve as smoothly as possible, a spline should be allowed 
all the space that is available. So the region should include not 
only virtual node boxes, but also any extra space next to them. 
After the spline has been computed, the virtual node boxes are 
updated according to the BBi, so splines computed afterward 
will be able to use all the space remaining but not come too 
close to splines already drawn. Because splines are drawn by 
a “greedy” strategy, they depend on the order in which they 
are computed. It seems reasonable to route the shorter splines 

first because they can often be drawn as straight lines, but the 
order does not seem to affect the drawing quality much. 

There are three details that can help to improve the appear- 
ance of the splines. First, when edges cross, they should not 
constrain each other too much, otherwise, a spline may have 
an awkward, sharp turn. This is easily avoided by making 
an adjustment to the boxes. When setting the size of a box, 
we ignore virtual nodes to the left or right that correspond 
to edges that cross within two ranks. Crossings further away 
are not considered because unintended multiple crossings can 
occur when the boxes become too sloppy. 

Second, when an edge has a section that is almost vertical, 
it looks better to just draw it as a vertical line. This is most 
obvious when edges run alongside each other, because parallel 
line segments look better than long segments with slightly 
different slopes. When the region finding procedure detects a 
long vertical section, it terminates the current region, draws its 
spline, draws the vertical line segment, and finally begins the 
region of the rest of the edge. This is one of the situations 
where 8, and 8, are used, since the splines must have a 
vertical tangent at the endpoint where they join the vertical 
line segment. 

Third, when several splines approach a common termination 
point, it is important to avoid “accidental” intersections. To 
do this, we check if there are previously computed splines 
with the same endpoint. If so, we find the closest ones to 
the right and the left. We then subdivide the inter-rank space, 
and evaluate the left and right splines at the intervals. These 
points (or the boundaries of the layout, if one of the left or 
right splines does not exist) determine a set of boxes that 

1 
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1. procedure compute-splines (B-array, q. theta-q, use-theta-q, s, theta-s, use-theta-s) 

2. compute-L-array @-my); 

3. 

4. 

5. else vector-q = zero-vector; 

6. 

7. else vector-s = zero-vector; 

8. 

9. compute-bboxes (); 

computes-amy (B-array, L-array, q, s); 
if use-theta-q then vector-q = anglevector(theta-q) 

if use-theta-s then vector-s = anglevector(theta-s) 

compute-s-may (B-array, L-array, p-array, vector-q, vector-s); 

10. end 
Fig. 17. Computing splines. 

separate the new spline from the existing ones as they approach 
the terminal node. The left and right splines and the boxes 
that result can be seen in Fig. 16. This subdivision of the 
inter-rank box could be viewed as approximating a polygonal 
region not necessarily aligned with the coordinate axes. In 
some layouts there are other places where nonaligned boxes 
or other polygons could prevent unintended tangencies. If 
we were writing this program again, we would try general 
polygons instead of boxes. 

Thus far we have not mentioned multiple edges between the 
same pair of nodes. When these exist, a spline is computed 
for one of the edges, and the rest of the edges are drawn by 
adding an increasing X coordinate displacement to each one 
(multiples of nodesep( G) work well). Space for multiple edges 
must be reserved in the previous pass, described in Section IV, 
when setting the separation between nodes. 

Flat Edges: Flat edges are handled much like inter-rank 
edges, but the region routes past intervening nodes and spaces 
between nodes. We omit most of the details since they are quite 
similar. One difference is that if an edge connects two adjacent 
nodes it is drawn as a single spline with the following control 
points: 

For multiple flat edges, a spline is computed for the first 
one, and succeeding edges are drawn by adding Y coordinate 
displacements. If an edge has a label, the label is positioned 
halfway along the edge. 

Self-Edges: Self-edges are drawn as loops on the sides of 
nodes. If an edge specifies tail or head ports, a polygonal 
region is generated that connects the two ports. The orientation 
of the region may be either clockwise or counterclockwise, 
depending on the positions of the ports. If an edge does not 
specify tail and head ports it is drawn as a sequence of two 
splines, P O , .  . . , p 3  and p 3 , .  . . , p6.  These control points are 

computed as follows: 

If there are multiple edges, their loops are nested. If an edge 
has a label, the label is positioned halfway along the edge. 
In the simple case mentioned above, the label is positioned 
to the right of point p 3 .  In the case of multiple edges with 
labels, the sizes of the labels are added to the displacement 
between edges. This prevents the curve of one edge crossing 
over the label of another edge. Space for self-edges is allocated 
in the previous pass, described in Section IV, when setting the 
separation between adjacent nodes. 

B. Computing Splines 
The computation of the splines has three stages. First, a 

piecewise linear curve or path lying entirely inside the region 
is computed. Then, the endpoints of this path are used as hints 
in the computation of a piecewise Bezier spline. Finally, the 
actual space used by the curve is computed in terms of the 
original boxes. The data structures computed by these three 
stages are shown in Fig. 19. The region shown in this figure is 
the same one as in Fig. 16. This example contains 13 boxes. 

The three stages are outlined in Fig. 17. 
Remarks on Fig. 17 
2: c0mpute-L-array computes the array LO,.  . . , L,+1 

where L1 is the line segment that is the intersection of box 
BiPl with box Bi. In Fig. 19, these line segments are shown 
as thicker lines between boxes. There are 14 such segments. 

3: compute-p-array computes an array of points 
P O , .  . . , pk  defining a feasible path that connects q and s. In 
Fig. 19, there are three such points. 
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33. 

procedure compute-s-array (B-may, L-array, p-array, vector-q, vector-s) 

spline = generate-spline @-array. vector-q, vector-s); 

if size (p-array) = 2 then 

while spline-fits (spline, B-array, L-array) = False do 

straighten-spline (spline); 

elseif spline-fits (spline, B-array, L-array) = False then 
count = 0; 
ospline = spline; 

repeat 

spline = refine-spline (p-may, ospline, 

mode (count, max-ite-rations)); 

fits = spline-fits (spline, B-array, L-array); 

count = count + 1; 

while (fits == False) and (count e= max-iterations); 

if fits == False then 

p = compute-splinesplit (spline, p-array); 

compute-s-array (B-arrayl, L-arrayl, p-arrayl, 

vector-q, vectorq); 

compute-s-array (B-array2, L-arrayZ, p-array2, 
reverse (vectors), vector-s); 

return; 

endif 

endif 

addto-s-may (spline); 

end 

Fig. 18. Spline drawing. 

4-7: If use-theta-q or use-theta-s are true, the 
curve is constrained to approach the corresponding endpoint 
at the specified angles. vector-q and vector-s  are nor- 
malized vectors. 

8: compute-s-array computes an array of points 
SO,. . . , Sk defining a piecewise Bezier spline that connects q 
and s and lies entirely inside the region. In the worst case, we 
can have one Bezier spline per box. In most cases, however, 
our approach generates significantly fewer splines. For 
example, in Fig. 19, there are only two splines, one between po  
and PI and one between p l  and p2.  In more complex paths, 

there may even be fewer splines than line segments, since, 
unlike a line, a spline can curve around obstacles. 

9: computehboxes computes the space actually taken 
up by the curve. It computes the array BBo, . . . , BB,, where 
BBi is the narrowest subbox of Bi containing the curve. 

compute-p-array and compute-s-array are both 
implemented as divide-and-conquer methods, as shown in Fig. 
18. 

Remarks on Fig. 18 
2: l ine- f  i t s  checks if the line defined by qand s lies 

entirely inside the feasible region. The line is clipped to each 

1 
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q = PO = LO 

q = p2 = L13 

Fig. 19. The three stages. 

box; if the line intersects a box, it must do so along the 
corresponding L segments. 

3: If the (q,  s) line does not fit, compute-linesplit 
finds the L segment that is the furthest from the (q,  s) line 
and subdivides B-array and L-array along that segment. p is 
the one of the two endpoints of the subdivision segment that 
is closer to the (q ,  s) line. In Fig. 19, for example, the path 
is subdivided along L7. 
4: addto-p-array adds p to the array of endpoints for 

the path. 
5-6: The two recursive calls to compute-p-array com- 

plete the computation of the path. compute-p-array is not 
guaranteed to be the shortest path, but it works very well so we 
have not developed it further. If it were important, the shortest 
path could be found in linear time using convex hulls [18]. 

10: generate-spline computes a Bezier spline that 
approximates the path. This is done using a common technique 

11-13: The case where there is only one segment in the path 
is handled first. spline-f its checks if the spline lies en- 
tirely inside the region. The spline is sampled along its length 
and these samples are then clipped as a linear path against the 
box region. The process is similar to that of line-f its. As 
long as the spline does not fit, straighten-spline adjusts 
the control points of the spline to reduce the curvature. In the 
worst case, the spline becomes a line, and that is known to fit 
inside the path. This worst case can produce sharp turns. Most 
of the time, however, the spline fits inside the region after just 
a few iterations and this process does not produce any visual 
anomalies. It is only when the region itself makes sharp turns 
that the worst case may happen. 

14-30: The second case is that the path has more than 
one segment. If the spline does not fit, refinespline 
perturbs the control points of the spline in an attempt to make 
the spline fit. The approach is similar to the straightening 
approach in lines 11-13. We try to decrease the curvature 
of the spline. If this does not seem to improve the fit, 
we try to increase the curvature. Since this process may 
never terminate, max-iterations controls how many times 
to try. mode returns a flag to indicate if the curvature is 
to be increased or decreased. If the spline still does not 
fit even after the refinement, we subdivide the problem. 
compute-splinesplit finds the endpoint of a segment 

~ 9 1 .  

on the path that is the furthest from the spline and subdivides 
the box and path arrays along that point. The two recursive 
calls to compute-s-array compute two piecewise Bezier 
splines, each fitting inside its corresponding part of the region. 
To force the two curves to join smoothly at the subdivision 
point, we also force the two splines to have the same unit 
tangent vector at that point. This guaranties C1 continuity at 
the subdivision point. Forcing C2 continuity does not seem 
to produce better results and is also much more expensive 
to compute. The straightening and refining heuristics, which 
save a lot of time, are based on the assumption that the tangent 
vectors at the endpoints of a spline can be scaled independently 
of the tangent vectors of the two adjacent splines. To maintain 
C2 continuity, whenever a tangent vector is scaled, the tangent 
vector of the adjacent spline must also be scaled so that the 
two vectors will continue to have the same length. The scaling 
can propagate all the way to the end of the region. In addition, 
some of these splines may not fit even after scaling, and this 
would require more subdivisions, including subdivisions inside 
a single box. This is more trouble than it is worth. 

32: Finally, addto-s-array adds the spline to the piece- 
wise Bezier spline. 

C. Edge Labels 
In dug, edge labels are placed next to the midpoint of the 

spline. This is an oversimplification since the placement does 
not avoid or even detect overlapping with other splines, labels, 
or nodes. Yet graphs with edge labels are often small and 
sparse, so this technique is sometimes adequate. 

In dot, edge labels on inter-rank edges are represented as off- 
center virtual nodes. This guarantees that labels never overlap 
other nodes, edges or labels. Certain adjustments are needed 
to make sure that adding labels does not affect the length 
of edges. Setting the minimum edge length to 2 (effectively 
doubling the ranks when virtual nodes are created) and halving 
the separation between ranks compensates for the label nodes. 
This makes it at least twice as expensive to draw a graph with 
labels, but the labels are readable. Fig. 20 shows a drawing 
of a graph with edge labels. 

Edge labels on self-edges are easy to handle, but flat edges 
are more complicated. Here we must choose the left-to-right 
order for the virtual node of the label so that its X coordinate 
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Fig. 20. A finite state machine with labeled transitions (0.15 s user time on a Sun 4/280). 

lies between the endpoint coordinates, not to the right or the REFERENCES 
left. At present we are still working on this problem. 

More sophisticated placement of labels in diagrams (such 
as geographic maps) is a difficult research problem deserving 
further study. However, it is worth remarking that the label 
placing program as described by Freeman and Ahn 1201 is 
larger than our whole graph drawing program. 

VI. CONCLUSIONS 
We have described a method for drawing digraphs. Our con- 

tributions are the application of network simplex for assigning 
ranks and final node coordinates, an improved heuristic for 
reducing edge crossing, and a method for making edge splines. 
The method of finding node coordinates allows edges with 
X coordinate endpoint displacements. These techniques are 
straightforward to program, run fast enough for interactive use, 
and make drawings that compare well with previous work as 
to being readable and visually pleasing. 

Further work might address the following: 
Understand how to modify the graph or its layout to 

Improve edge-crossing and spline-drawing heuristics. 
Allow more interaction between the layout passes. Differ- 
ent solutions having the same cost in one phase may affect 
results a great deal in a following phase. For instance, two 
layouts can have the same number of crossings but much 
different final coordinates. 
Support incremental (on-line) graph drawing for anima- 
tion. Stability from one drawing to the next is essential. 

enhance readability. 
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