
214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

A Technique for Drawing Directed Graphs
Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gem-Phong Vo

Abstract- We describe a four-pass algorithm for drawing
directed graphs. The first pass finds an optimal rank assignment
using a network simplex algorithm. The second pass sets the
vertex order within ranks by an iterative heuristic incorporat-
ing a novel weight function and local transpositions to reduce
crossings. The third pass finds optimal coordinates for nodes by
constructing and ranking an auxiliary graph. The fourth pass
makes splines to draw edges. The algorithm makes good drawings
and runs fast.

Index Tenns-Directed graph layout algorithm, network sim-
plex.

I. INTRODUCTION
RAWING abstract graphs is a topic of ongoing research, D having such applications as visualization of programs and

data structures and document preparation. This paper describes
a technique for drawing directed graphs in the plane. The
goal is to make high-quality drawings quickly enough for
interactive use. These algorithms are the basis of a practical
implementation [l].

A. Aesthetic Criteria

To make drawings, it helps to assume that a directed
graph has an overall flow or direction, such as top to bottom
(assumed in most examples in this paper) or left to right. Such
flows can be seen in handmade drawings of finite automata
where the flow is from initial to terminal states, or in data flow
graphs from input to output. This observation has motivated
a collection of methods for drawing digraphs based on the
following aesthetic principles:
Al: Expose hierarchical structure in the graph. In particular,
aim edges in the same general direction if possible. This aids
finding directed paths and highlights source and sink nodes.
A2: Avoid visual anomalies that do not convey information
about the underlying graph. For example, avoid edge crossings
and sharp bends.
A3: Keep edges short. This makes it easier to find related
nodes and contributes to A2.
A4: Favor symmetry and balance. This aesthetic has a sec-
ondary role in a few places in our algorithm.
There is no way to optimize all these aesthetics simultane-
ously. For instance, a placement of nodes and orientation of
edges preferred according to A1 may force edge crossings
that are undesirable according to A2. What is more, it is
computationally intractable to minimize edge crossings or to
find subgraphs having symmetry. We therefore make some

Manuscript received August 26, 1991; revised May 22, 1992. Recom-
mended by Helmut Partsch.

The authors are with AT&T Bell Laboratories, Murray Hill, NJ 07974.
IEEE Log Number 9206903.

1. procedure draw-grapho

2. begin
3. ranko;

4. ordering();
5. position();

6. make-splineso;
7. end

Fig. 1. Main algorithm.

simplifying assumptions and rely on heuristics that run quickly
and make good layouts in common cases. For a survey of
other aesthetic principles, we refer the reader to the annotated
bibliography on graph-drawing algorithms [2] .

B. Problem Description
The input to the drawing algorithm is an attributed graph

G = (V, E) possibly containing loops and multiedges. We
assume that G is connected, as each connected component
can be laid out separately. The attributes are:

zs i ze(v) , yszze(v): Size of bounding box of a node v.
nodesep(G): Minimum horizontal separation be-

tween node boxes.
ranksep(G): Minimum vertical separation between

node boxes.
w(e): Weight of an edge e, usually 1. The

weight signifies the edge's importance,
which translates to keeping the edge
short and vertically aligned.

The algorithm assigns each node w to a rectangle in
the plane with the center point (z(w),y(w)) and assigns
each edge e to a sequence of B-spline control points
(zo(e) ,yo(e)) , . . . , (s,(e), y,(e)). Although the unit of these
dimensions is not specified, it is convenient to use the
traditional coordinate system of 72 units per inch in an
implementation. The layout is generally guided by the aesthetic
criteria Al-A4, and specifically by the graph attributes. The
details of these constraints will be supplied in the following
sections.

The user can further constrain the layout in a way that
is useful for drawing graphs that have time-lines or for
highlighting source and sink nodes. The initial pass of the
algorithm described in the next section assigns nodes to
discrete ranks 0 . . . Max-rank. Nodes in the same rank
receive the same Y coordinate value. The user may provide
sets Smax,Smin,S0,S1, . . . SI, & V. These are (possibly

1

0098-5589/93$03.00 0 1993 IEEE

___ ~~~

215 GANSNER et al.: A TECHNIQUE FOR DRAWING DIRECTED GRAPHS

(a)
digraph world-dynamics {

size=”6,6”;
S8 -> 9; S24 -> 27; S24 -> 25; S1 -> 10; S1 -> 2; S35 -> 36;
S35 -> 43; S30 -> 31; S30 -> 33; 9 -> 42; 9 -> T1; 25 -> T1;
25 -> 26; 27 -> T24; 2 -> 3; 2 -> 16; 2 -> 17; 2 -> T1; 2 -> 18;
10 -> 11; 10 -> 14; 10 -> T1; 10 -> 13; 10 -> 12;
31 -> T1; 31 -> 32; 33 -> T30; 33 -> 34; 42 -> 4; 26 -> 4;
3 -> 4; 16 -> 15; 17 -> 19; 18 -> 29; 11 -> 4; 14 -> 15;
37 -> 39; 37 -> 41; 37 -> 38; 37 -> 40; 13 -> 19; 12 -> 29;
43 -> 38; 43 -> 40; 36 -> 19; 32 -> 23; 34 -> 29; 39 -> 15;
41 -> 29; 38 -> 4; 40 -> 19; 4 -> 5; 19 -> 21; 19 -> 20;
19 -> 28; 5 -> 6 ; 5 -> T35; 5 -> 23; 21 -> 22; 20 -> 15; 28 -> 29;
6 -> I ; 15 -> T1; 22 -> 23; 22 -> T35; 29 -> T30; 7 -> T8;
23 -> T24; 23 -> T1;

(b)
Fig. 2. (a) 1.11 s user time on a Sun-4/280. (b) Graph file listing.

empty) sets of nodes that must be placed together on the
maximum, minimum, or same rank, respectively.

C. Related Work
Drawing digraphs using an iterative method to reduce edge

crossing was first studied by Warfield [3], and similar methods
were discovered by Carpano [4] and Sugiyama, Tagawa, and
Toda [5]. Di Battista and Tamassia describe an algorithm for
embedding planar acyclic digraphs such that all edges flow in
the same direction [6] . We view our work as building on the
approach of Warfield et al.

D. Overview

The graph-drawing algorithm has four passes, as shown in
Fig. 1. The first pass places the nodes in discrete ranks. The
second sets the order of nodes within ranks to avoid edge
crossings. The third sets the actual layout coordinates of nodes.
The final pass finds the spline control points for edges.

Our contributions are 1) an efficient way of ranking the
nodes using a network simplex algorithm, 2) improved heuris-

tics to reduce edge crossings, 3) a method for computing
the node coordinates as a rank assignment problem, and 4)
a method for setting spline control points. Techniques 1) and
2) were first implemented in the graph drawing program dag
, described in [l]. Further work, especially 3) and 4), have
been incorporated in dot [7], a successor to dag. Figs. 2 and
3 are samples of dot’s output with the corresponding input
files.

11. OPTIMAL RANK ASSIGNMENT

The first pass assigns each node U E G to an integer rank
X(v) consistent with its edges. This means that for every e =
(U , w) E E , Z(e) 2 6 (e) , where the length Z(e) of e = (U , w)
is defined as X(w) - X(v), and 6(e) represents some given
minimum length constraint. 6(e) is usually 1, but can take
any nonnegative integer value. 6 (e) may be set internally for
technical reasons as described shortly or externally if the user
wants to adjust the rank assignment. For this pass, each of the
nonempty sets S,,, Smin, SO, . . , SI, is temporarily merged

1 T - -

216

19lZ

1
I
1
1

1976

1978

1980

15l2

1988

1988

1990

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

-

I -

N

digraph shells {
size-"7,8 " ;
node [fontsize=24, shape = plaintext];
1972 -> 1976 -> 1978 -> 1980 -> 1982 -> 1984 -> 1986 -> 1988

-> 1990 -> future;

node [fontsize-20, shape = box];
{ rank - same; 1976 Mashey Bourne; 1
{ rank = same; 1978 Formshell csh; 1
rank - same; 1980 esh vsh; 1

{ rank = same; 1982 ksh "System-V";)
{ rank = same; 1984 v9sh tcsh; 1
{ rank = same; 1986 "ksh-in; }
{ rank = same; 1988 KornShell Perl rc; 1
{ rank = same; 1990 tcl Bash; 1
{ rank = same; "future" POSIX "ksh-POSIX";)

Thompson -> {Mashey Bourne cshl; csh -> tcsh;
Bourne -> [ksh esh vsh "System-V" v9sh); v9sh -> rc;

{esh vsh Formshell csh) -> ksh;
{KornShell "System-V"1 -> POSIX;
ksh -> "ksh-i" -> KornShell -> "ksh-POSIX";
Bourne -> Formshell;

{Bourne "ksh-i" KornShell) -> Bash;

/ * 'invisible' edges to adjust node placement * /
edge [style-invi s I ;
1984 -> v9sh -> tcsh ; 1988 -> rc -> KornShell;
Formshell -> csh; KornShell -> Perl;

1
(b)

Fig. 3. (a) 0.50 s user time of 0.50 s on a Sun-4/280. (b) Graph file listing.

into one node. In addition, loops are ignored, and multiple
edges are merged into one edge whose weight is the sum of
the weights of the merged edges. For efficiency, leaf nodes that
are not a member of one of the above sets may be ignored,
since the rank of a leaf is trivially determined in an optimal
ranking.

A. Making the Graph Acyclic

A graph must be to have a consistent rank as-

signment. Because the input graph may contain cycles, a
preprocessing step detects cycles and breaks them by reversing
certain edges [8]. Of course, these edges are only reversed

1
I

GANSNER et al.: A TECHNIQUE FOR DRAWING DIRECTED GRAPHS 217

internally; arrowheads in the drawing show the original di-
rection. A useful procedure for breaking cycles is based on
depth-first search. Edges are searched in the “natural order”
of the graph input, starting from some source or sink nodes
if any exist. Depth-first search partitions edges into two sets:
tree edges and nontree edges 191. The tree defines a partial
order on nodes. Given this partial order, the nontree edges
further partition into three sets: cross edges, forward edges,
and back edges. Cross edges connect unrelated nodes in the
partial order. Forward edges connect a node to some of its
descendants. Back edges connect a descendant to some of its
ancestors. It is clear that adding forward and cross edges to
the partial order does not create cycles. Because reversing back
edges makes them into forward edges, all cycles are broken
by this procedure.

It seems reasonable to try to reverse a smaller or even
minimal set of edges. One difficulty is that finding a min-
imal set (the “feedback arc set” problem) is NP-complete
[lo], [l l] . More important, this would probably not im-
prove the drawings. We implemented a heuristic to reverse
edges that participate in many cycles. The heuristic takes
one nontrivial strongly connected component at a time, in an
arbitrary order. With each component, it counts the number
of times each edge forms a cycle in a depth-first traversal.
An edge with a maximal count is reversed. This is repeated
until there are no more nontrivial strongly connected compo-
nents.

Experiments with this heuristic show that most directed
graphs arising from practical applications have a natural edge
direction even when they contain cycles. Graph input usually
reflects this natural direction. In fact, graphs are often created
by a graph search performed by some other tool. Reversing
an inappropriate edge disturbs the drawing. For instance, even
when a procedure call graph has cycles, one still expects to
see top-level functions near the top of the drawing, and not
somewhere in the middle. From the standpoint of stability, the
depth-first, cycle-breaking heuristic seems preferable. It also
makes more informative drawings than would be obtained by
collapsing all the nodes in a cycle into one node, or placing
the nodes in a cycle on the same rank, or duplicating one of
the nodes in the cycle, as various researchers have suggested

Another detail is that the nodes representing S,,, and
Smin must always have the maximum and minimum rank
assignments. This property is ensured by reversing out-edges
of S,,, and in-edges of Smin. Also, for all nodes U with no
in-edge, we make a temporary edge (&in, w) with 6 = 0, and
for all nodes v with no out-edge, we make a temporary edge
(w,SmaX) with 15 = 0. Thus, A(&;,) 5 X(w) 5 X(S,,,) for
all U.

[41, ~ 1 , 151.

B. Problem Definition
Principle A3 prescribes making short edges. Besides making

better layouts, short edges reduce the running time of later
passes whose time depends on the total edge length. So it is
desirable to find an optimal node ranking, i.e., one for which
the sum of all the weighted edge lengths in minimal.

Finding an optimal ranking can be reformulated as the
following integer program:

min w(71, w)(x(w) - x(v))

subject to : X(w) - X(w) 2 S(w, w) V (w, w) 6 E
The weight function w and the minimum length function 6 as
previously described map the edge set E into the nonnegative
rational numbers and the nonnegative integers, respectively.

There are various ways to solve this integer program in
polynomial time. One method is to solve the equivalent linear
program, then transform the solution to an integer one in
polynomial time. Another involves converting the optimal
rank assignment problem to an equivalent min-cost flow
or circulation problem, for which there are polynomial-time
algorithms (see [13] and its references). As the constraint
matrix is totally unimodular, the problem can also be solved,
though not necessarily in polynomial time, by applying the
simplex method. A more complete discussion of these and
other techniques will be reported in [14].

(v , ~) E

C. Network Simplex

Here, we describe a simple approach to the problem based
on a network simplex formulation [15]. Although its time
complexity has not been proven polynomial, in practice it takes
few iterations and runs quickly.

We begin with a few definitions and observations. A feasible
ranking is one satisfying the length constraints Z(e) 2 6 (e)
for all e. Given any ranking, not necessarily feasible, the slack
of an edge is the difference of its length and its minimum
length. Thus, a ranking is feasible if the slack of every edge
is nonnegative. An edge is tight if its slack is zero.

A spanning tree of a graph induces a ranking, or rather,
a family of equivalent rankings. (Note that the spanning tree
is on the underlying unrooted undirected graph, and is not
necessarily a directed tree.) This ranking is generated by
picking an initial node and assigning it a rank. Then, for each
node adjacent in the spanning tree to a ranked node, assign
it the rank of the adjacent node, incremented or decremented
by the minimum length of the connecting edge, depending
on whether it is the head or tail of the connecting edge. This
process is continued until all nodes are ranked. A spanning tree
is feasible if it induces a feasible ranking. By construction, all
edges in the feasible tree are tight.

Given a feasible spanning tree, we can associate an integer
cut value with each tree edge as follows. If the tree edge is
deleted, the tree breaks into two connected components, the tail
component containing the tail node of the edge, and the head
component containing the head node. The cut value is defined
as the sum of the weights of all edges from the tail component
to the head component, including the tree edge, minus the sum
of the weights of all edges from the head component to the
tail component.

Typically (but not always because of degeneracy), a negative
cut value indicates that the weighted edge length sum could
be reduced by lengthening the tree edge as much as possible,
until one of the head component to tail component edges

218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

1. procedure rank()

2. feasible-tree();

3.

4. f = enter-edge(e);

5. exchange(e,f);

6. end

7. normalize();

8. balance();

9. end

while (e = leave-edge()) # nil do

Fig. 4. Network simplex.

becomes tight. This corresponds to replacing the tree edge
in the spanning tree with the newly tight edge, obtaining a
new feasible spanning tree. It is also simple to see that an
optimal ranking can be used to generate another optimal rank-
ing induced by a feasible spanning tree. These observations
are the key to solving the ranking problem in a graphical
rather than algebraic context. Tree edges with negative cut
values are replaced by appropriate nontree edges, until all tree
edges have nonnegative cut values. To guarantee termination,
the implementation should employ an anticycling technique,
although we have never found this necessary in practice. The
resulting spanning tree corresponds to an optimal ranking. For
further discussion of the termination of the network simplex
algorithm and optimality of the result, the interested reader is
referred to the literature [14]-[16].

Fig. 4. describes our version of the network simplex algo-
rithm.

Remarks on Fig. 4
2: The function f e a s i b l e - t r e e constructs an initial

feasible spanning tree. This procedure is described more fully
shortly. The simplex method starts with a feasible solution
and maintains this invariant.

3: leave-edge returns a tree edge with a negative cut
value, or nil if there is none, meaning the solution is optimal.
Any edge with a negative cut value may be selected as the
edge to remove.

4: en te r - edge finds a nontree edge to replace e . This is
done by breaking the edge e, which divides the tree into a head
and tail component. All edges going from the head component
to the tail are considered, with an edge of minimum slack being
chosen. This is necessary to maintain feasibility.

5: The edges are exchanged, updating the tree and its cut
values.

7: The solution is normalized by setting the least rank to
zero.

8: Nodes having equal in- and out-edge weights and multi-
ple feasible ranks are moved to a feasible rank with the fewest
nodes. The purpose is to reduce crowding and improve the
aspect ratio of the drawing, following principle A4. The adjust-
ment does not change the cost of the rank assignment. Nodes
are adjusted in a greedy fashion, which works sufficiently well.
Globally balancing ranks is considered in a forthcoming paper
~ 4 1 .

1. procedure feasible-tree0

2. initJank();

3.

4.

5.

6. delta = slack(e);

7.

8.

9. end

while tight-tree0 < IV I do

e = a non-tree edge incident on the tree

with a minimal amount of slack;

if incident node is e . W then delta = delta;

for v in Tree do v .rank = v .rank + del%

10. init-cutvalues();

11. end
Fig. 5. Finding an initial feasible tree.

Fig. 5 shows how to construct an initial feasible tree.
Remarks on Fig. 5
2: An initial feasible ranking is computed. For brevity,

i n i t - r a n k is not given here, Our version keeps nodes in
a queue. Nodes are placed in the queue when they have no
unscanned in-edges. As nodes are taken off the queue, they are
assigned the least rank that satisfies their in-edges, and their
out-edges are marked as scanned. In the simplest case, where
S = 1 for all edges, this corresponds to viewing the graph as
a poset and assigning the minimal elements to rank 0. These
nodes are removed from the poset and the new set of minimal
elements are assigned rank 1, etc.

3: Function t i g h t - t r e e finds a maximal tree of tight
edges containing some fixed node and returns the number of
nodes in the tree. Note that such a maximal tree is just a
spanning tree for the subgraph induced by all nodes reachable
from the fixed node in the underlying undirected graph using
only tight edges. In particular, all such trees have the same
number of nodes.

4-8: This finds an edge to a nontree node that is adjacent
to the tree, and adjusts the ranks of the tree nodes to make
this edge tight. As the edge was picked to have minimal
slack, the resulting ranking is still feasible. Thus, on every
iteration, the maximal tight tree gains at least one node, and the
algorithm eventually terminates with a feasible spanning tree.
This technique is essentially the one described by Sugiyama
et a1 [5].

10: The i n i t - c u t v a l u e s function computes the cut val-
ues of the tree edges. For each tree edge, this is computed by
marking the nodes as belonging to the head or tail component,
and then performing the sum of the signed weights of all
edges whose head and tail are in different components, the
sign being negative for those edges going from the head to
the tail component.

A small example of running the network simplex algorithm
is shown in Fig. 6. Nontree edges are dotted, and all edges have
weight 1. In (a), the graph is shown after the initial ranking,
with cut values as indicated. For instance, the cut value of
edge (9, h) is -1, corresponding to the weight of edge (9, h)
(from the tail component to the head component) minus the
weights of edges (a, e) and (a, f) (from the head component

GANSNER et al.: A TECHNIQUE FOR DRAWING DIRECTED GRAPHS 219

(a) (b)
Fig. 6. Finding an optimal feasible tree.

to the tail component). In (b), the edge (g, h) with a negative
cut value has been replaced by the nontree edge (a, e), with
the new cut values shown. Because they are all nonnegative,
the solution is optimal and the algorithm terminates.

D. Implementation Details

Versions of the network simplex algorithm are well under-
stood and there are results in the literature to help tune an
implementation [15]. We feel, however, it is worth pointing
out several specific points to prospective implementors. These
optimizations are useful here, but become crucial when we
use the network simplex again in Section IV, applied to much
larger graphs.

Computing the initial feasible tree and initial cut values
is frequently a significant proportion of the cost in solving
the network simplex algorithm. For many graphs in practice,
the initial solution is close to optimal, requiring just a few
iterations to reach the final solution. In a naive implementation,
initial cut values can be found by taking every tree edge in
turn, breaking it, labeling each node according to whether it
belongs to the head or tail component, and performing the
sum. This takes O (V E) time.

To reduce this cost, we note that the cut values can be
computed using information local to an edge if the search
is ordered from the leaves of the feasible tree inward. It is
trivial to compute the cut value of a tree edge with one of its
endpoints a leaf in the tree, since either the head or the tail
component consists of a single node. Now, assuming the cut
values are known for all the edges incident on a given node
except one, the cut value of the remaining edge is the sum of
the known cut values plus a term dependent only on the edges
incident to the given node.

We illustrate this computation in Fig. 7 in the case where
two tree edges, with known cut values, join a third, with the
shown orientations. The other cases are handled similarly. We
assume the cut values of (u,w) and (v ,w) are known. The
edges labeled with capital letters represent the set of all non-
tree edges with the given direction and whose heads and tails
belong to the components shown. The cut values of (u ,w)

Fig. 7. Incrementally computing cut values.

and (w, w) are given by

c (~ , ~) = W (U , W) + A + C + F - B - E - D
and

c (~ , ~) =w(u , W) + L + I + D - K - J - C

respectively. The cut value of (w,x) is then

an expression involving only local edge information and the
known cut values. By thus computing cut values incrementally,
we can ensure that every edge is examined only twice. This
greatly reduces the time spent computing initial cut values.

Another valuable optimization, similar to a technique de-
scribed in [15], is to perform a postorder traversal of the
tree, starting from some fixed root node wrOot, and labeling
each node w with its postorder traversal number Zim(w), the
least number Zow(v) of any descendant in the search, and
the edge parent(v) by which the node was reached (see Fig.
8). This provides an inexpensive way to test whether a node
lies in the head or tail component of a tree edge, and thus
whether a nontree edge crosses between the two components.
For example, if e = (u,w) is a tree edge and w,,,t is in
the head component of the edge (i.e., Zim(u) < lim(w)),
then a node w is in the tail component of e if and only if
low(u) 5 l im(w) 5 lim(u). These numbers can also be
used to update the tree efficiently during the network simplex
iterations. If f = (w , x) is the entering edge, the only edges
whose cut values must be adjusted are those in the path
connecting w and x in the tree. This path is determined by
following the parent edges back from w and x until the
least common ancestor is reached, i.e., the first node 1 such

- 1 I

220 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

Fig. 8. Postorder traversal with nodes labeled by (low, lim).

that low(1) 5 Zim(w),lim(z) 5 lim(l). Of course, these
postorder parameters must also be adjusted when exchanging
tree edges, but only for nodes below 1.

The network simplex is also very sensitive to the choice
of the negative edge to replace. We observed that searching
cyclically through all the tree edges, instead of searching from
the beginning of the list of tree edges every time, can save
many iterations.

111. VERTEX ORDERING WITHIN RANKS
After rank assignment, edges between nodes more than one

rank apart are replaced by chains of unit length edges between
temporary or “virtual” nodes. The virtual nodes are placed on
the intermediate ranks, converting the original graph into one
whose edges connect only nodes on adjacent ranks. Self-edges
are ignored in this pass, and multiedges are merged as in the
previous pass.

The vertex order within ranks determines the edge crossings
in the layout, thus a good ordering is one with few crossings.
Heuristics are appropriate since minimizing edge crossings in
layouts of ranked graphs is NP-complete, even for only two
ranks [lo].

Several important heuristics for reducing edge crossings
in ranked graphs are based on the following scheme first
suggested by Warfield [3]. An initial ordering within each rank
is computed. Then a sequence of iterations is performed to try
to improve the orderings. Each iteration traverses from the first
rank to the last one, or vice versa. When visiting a rank, each of
its vertices is assigned a weight based on the relative positions
of its incident vertices on the preceding rank. Then the vertices
in the rank are re-ordered by sorting on these weights.

Two common vertex weighting methods are the barycenter
function [5] and the median function [17]. Let U be a vertex
and P the list of positions of its incident vertices on the
appropriate adjacent rank. Note that the position of an adjacent
node is only its ordinal number in the current ordering. The
barycenter method defines the weight of v as the average of
elements in P. The median method defines the weight of U as
the median of elements in P. When the number of elements in
P is even, there are two medians. This gives rise to two median
methods: always using the left median, and always using

1. procedure ordering()

2. order = init_order();

3. best=order;

4.

5. wmedian(0rder.i);

6. hanspose(0rder);

7.

8. best = order;

9. end

for i = 0 to Max-iterations do

if crossing(0rder) < crossing(best) then

10. returnbesr

11. end

Fig. 9. Vertex-ordering algorithm.

the right median. The median method consistently performs
better than the barycenter method and has a slight theoretical
advantage since Eades and Wormald [17] have shown that the
median layout of a two-level graph has no more than three
times the minimum number of crossings. No such bound is
known for the barycenter method.

Our node-ordering heuristic is a refinement of the median
method with two major innovations. First, when there are two
median values, we use an interpolated value biased toward
the side where vertices are more closely packed. The second
improvement uses an additional heuristic to reduce obvious
crossings after the vertices have been sorted, transforming
a given ordering to one that is locally optimal with respect
to transposition of adjacent vertices. It typically provides an
additional 2650% reduction in edge crossings. We refer the
reader to [l] for detailed statistics.

Fig. 9 shows the node-ordering algorithm.
Remarks on Fig. 9
2: i n i t - o r d e r initially orders the nodes in each rank.

This may be done by a depth-first or breadth-first search
starting with vertices of minimum rank. Vertices are assigned
positions in their ranks in left-to-right order as the search
progresses. This strategy ensures that the initial ordering of a
tree has no crossing. This is important because such crossings
are obvious, easily avoided “mistakes.”

4-9: M a x - i t e r a t i o n s is the maximum number of iter-
ations. We set M a x - i t e r a t i o n s to 24. At each iteration, if
the number of crossings improves, the new ordering is saved.
In an actual implementation, one might prefer an adaptive
strategy that iterates as long as the solution has improved at
least a few percent over the last several iterations.wmedian
reorders the nodes within each rank based on the weighted
median heuristic. t r a n s p o s e repeatedly exchanges adjacent
vertices on the same rank if this decreases the number of cross-
ings. Both of these functions are described more completely
as follows.

The weighted median heuristic is shown in Fig. 10. Depend-
ing on the parity of the current iteration number, the ranks
are traversed from top to bottom or from bottom to top. TO
simplify the presentation, Fig. 10 only shows one direction in
detail.

GANSNER et al.: A TECHNIQUE FOR DRAWING DIRECTED GRAPHS

1.

2.

3.

4.

5 .

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

procedure wmedian(order,iter)

if iter mad 2 == 0 then

for r = 1 to Max-rank do

for v in &[r] do

median[vl = median-value(v,r-1);

sort(orde~jrl,median);
end

e l s e . . .

endif

end

procedure median-value(v,adj-rank)

P = adjqosition(v,adj-rank);

m = IPlD;
if IPI=Othen

return -1.0;

elseif IP I mod 2 == 1 then

return P[m];

elseif IP I = 2 then

return P[OI + P[11)/2;
else

left = P[m-1] - P(03;

right = P[IP 1-13 - P[m];

return P[m-lI%ght + P[m]*left)/(left+right);

endif

end

Fig. 10. The weighted median heuristic.

Remarks on Fig. 10
1-10: In the forward traversal of the ranks, the main loop

starts at rank 1 and ends at the maximum rank. At each rank
a vertex is assigned a median based on the adjacent vertices
on the previous rank. Then, the vertices in the rank are sorted
by their medians. An important consideration is what to do
with vertices that have no adjacent vertices on the previous
rank. In our implementation such vertices are left fixed in
their current positions with nonfixed vertices sorted into the
remaining positions.

12-26: The median value of a vertex is defined as the
median position of the adjacent vertices if that is uniquely
defined. Otherwise, it is interpolated between the two median
positions using a measure of tightness. Generally, the weighted
median is biased toward the side where vertices are more
closely packed.

13: The ad j - p o s i t i o n function returns an ordered array
of the present positions of the nodes adjacent to v in the given
adjacent rank.

~

1.

2.

3.

4.

5 .

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

procedure transpose(rank)

improved = True;

while improved do

improved = False,
for r = 0 to Max-rank do

for i = 0 to Irank[rl 1-2 do

v = rank[r][i];

w = rank[r][i+l];

if crossing(v,w) > crossing(w,v) then

improved = True;

exchange(rank[rl [il ,rank[rl [i+ll);

endif

end

end

end

end

221

Fig. 11. The transposition heuristic for reducing edge crossings.

15-16: Nodes with no adjacent vertices are given a median
value of -1. This is used within t h e s o r t function to indicate
that these nodes should be left in their current positions.

Fig. 11 shows the transposition heuristic.
Remarks on Fig. 11
3-15: This is the main loop that iterates as long as the

number of edge crossings can be reduced by transpositions.
As in the loop in the o r d e r i n g function, an adaptive
strategy could be applied here to terminate the loop once the
improvement is a sufficiently small fraction of the number of
crossings.

7-12: Each adjacent pair of vertices is examined. Their
order is switched if this reduces the number of crossings. The
function c r o s s i n g (v,w) simply counts the number of
edge crossings if v appears to the left of w in their rank.

One small point is that the original graph may have edges
between nodes on the same rank. We call these “flat edges.”
Following criterion A l , we try to aim them all in the same
direction across the rank. If ranks are ordered from top to
bottom, flat edges generally point from left to right. This
involves some minor modifications to the vertex ordering
algorithms. If there are flat edges, their transitive closure is
computed before finding the vertex order. The vertex order
must always embed this partial order. In particular, the initial
order must be consistent with it, and the t r a n s p o s e and the
sor t routines must not exchange nodes against the partial
order.

When sorting nodes by medians and transposing adjacent
nodes, equality can occur when comparing median values or
number of edge crossings. We have found it helpful, and in
keeping with the spirit of A4, to flip nodes with equal values
during the sorting or transposing passes on every other forward
and backward traversal.

222 IEEE TRANSACTIONS ON S O M A R E ENGINEERING, VOL. 19, NO. 3, MARCH 1993

One final point is that it is generally worth the extra cost
to run the vertex ordering algorithm twice: once for an initial
order determined by starting with vertices of minimal rank
and searching out-edges, and the second time by starting with
vertices of maximal rank and searching in-edges. This allows
one to pick the better of two different solutions.

IV. NODE COORDINATE^

The third pass sets node coordinates. Previous work has
treated this as a postprocessing step of the barycenter or
median methods, making local adjustments to avoid bad
layouts. Considering node placement as a separate, well-
defined problem, however, yields better layouts and provides
a foundation for further extensions, such as trying to set
the vertex order by methods that are more topological than
geometric.

X and Y coordinates are computed in two separate steps.
The first step assigns X coordinates to all nodes (including
virtual nodes), subject to the order within ranks already deter-
mined. The second step assigns Y coordinates, giving the same
value to nodes in the same rank. The Y coordinate assignment
maintains the minimum separation ranksep(G) between node
boxes. Optionally, the separation between adjacent ranks can
be increased to improve the slope of nearly horizontal edges
to make them more readable. Because the Y coordinate step
is straightforward, the remainder of this section deals with X
coordinates.

According to the aesthetic principles already mentioned,
short, straight edges are preferable to long, crooked ones. This
property of X coordinates is captured in the following integer
optimization problem:

min f i (e)w(e) lxw - x,1

subject to: xb - 2, 2 p(a, b)
e=(v,w)

where a is the left neighbor of b on the same rank and

xs i ze (a) + xs ize(b)
2

+ nodesep(G) p (a , b) =

The weight Q (e) , an internal value distinct from the input
edge weight U(e) , is defined to favor straightening long edges.
Since edges between real nodes in adjacent ranks can always
be drawn as straight lines, it is more important to reduce
the horizontal distance between virtual nodes, so chains may
be aligned vertically and thus straightened. The failure to
straighten long edges can result in a “spaghetti effect”of edges
having many different slopes. Accordingly, edges are divided
into three types depending on their end vertices 1) both real
nodes, 2) one real node and one virtual node, or 3) both virtual
nodes. If e , f, and g are edges of types 1)-3), respectively,
then O (e) 5 O(f) 5 R(g). Our implementation uses 1,
2, and 8. p is a function on pairs of adjacent nodes in the
same rank giving the minimum separation between their center
points.

There are standard techniques for transforming this problem
into a linear program by the addition of auxiliary variables
and inequalities to remove the absolute values [15]. As the

1. procedure xcoordinate()

2. xcoord = init-xcoardo;

3. xbest = xcoord;

4.

5. medianpos(i,xcoord);

6. minedge(i,xcoord);

7. “de(i,xcOord);

8. minpath(i,xcoord);

9. packcut(i,xcoord);

for i = 0 to Max-iterations do

10.

11. xbest = xcoord;

12. end

13. return xbest;

14. end

if xlength(xcoord) < xlength(xbest) then

Fig. 12. Assigning z coordinates to vertices.

resulting constraints are totally unimodular, solving the linear
program with the simplex method produces a solution to the
integer program. This is easy to program, and the layouts it
gives are aesthetically pleasing. Unfortunately, the transfor-
mation increases the size of the simplex matrix from V E to
V E + E2 entries. Graphs of a few dozen nodes and edges
can be drawn in a few seconds, but larger graphs take much
longer, and even the amount of memory available becomes
a limitation. So this is not a completely satisfactory way to
make layouts, particularly on smaller computers.

A. Heuristic Approach

This approach replaces the linear program with a heuristic
for finding X coordinates. The heuristic finds a “good” initial
placement, then iteratively tries to improve it by sweeping up
and down the ranks similar to the vertex ordering algorithm
described in the previous section. The heuristic is sketched in
Fig. 12.

Remarks on Fig. 12
2: An initial set of coordinates is computed as follows. For

each rank, the left-most node is assigned coordinate 0. The
coordinate of the next node is then assigned a value sufficient
to satisfy the minimal separation from the previous one, and
so on. Thus, on each rank, nodes are initially packed as far
left as possible.

4-12: In each iteration, a collection of heuristics is ap-
plied to improve the coordinate assignment. If this results
in an improvement over the previous best assignment, the
coordinates are saved. The function xlength implements the
objective function from the above optimization problem. In
our implementation, Max-iterations is 8.

5 : The median heuristic is based on the observation that the
value 1x - 10 I + Ix - x1 I + . . . + 11 - zi I is minimized when x
is the median of the x i . The heuristic assigns each node both
an upward and downward priority given by the weighted sum
of its in- and out-edges, respectively. On downward iterations,
nodes are processed in the downward priority order and placed

GANSNER et al.: A TECHNIQUE FOR DRAWING DIRECTED GRAPHS 223

at the median position of their downward neighbors subject to
the placement of higher priority nodes and space requirements
of nodes not yet placed. When there are two medians, taking
their mean improves symmetry (A4). Upward placement is
handled similarly.
6: minedge is similar to medianpos but considers only

edges between two real nodes. It places the edge, oriented
vertically, as close as possible to the median of the nodes
adjacent to either endpoint of the edge.

7: minnode performs local optimization one node at a
time, using a queue. Initially all nodes are queued. When
a node is removed from the queue, it is placed as close as
possible to the median of all its neighbors (both up and down)
subject to the separation function p. If the node’s placement is
changed, its neighbors are requeued if not already in the queue.
minnode terminates when it achieves a local minimum.

8: minpath straightens chains of virtual nodes by sequen-
tially finding subchains that may be assigned the same X
coordinate.

9: packcut sweeps the layout from left to right, searching
for blocks that can be compacted. For each node, if all the
nodes to the right of it can be shifted to the left by some
increment without violating any positioning constraints, the
shift is performed. This is performed by an algorithm that
operates on a list of nodes sorted in order of X coordinates.
Although the algorithm is quadratic in the worst case, it
performs well in practice since at every possible cut it only
needs to search the nodes in the neighborhood that is affected
by the candidate shift.

These heuristics make good layouts quickly, but they are
complicated to program and the results are sometimes no-
ticeably imperfect. Further fine tuning is difficult because the
heuristics begin to interfere with each other.

B. Optimal Node Placement

We noticed that the packcut heuristic does not find all
subgraphs that could be compacted to improve the solution.
We considered a more general heuristic to search for subgraphs
and shift them. We then observed that this is very similar to the
way the network simplex algorithm moves entire subgraphs
to find an optimal rank assignment (see Section 11). This
suggested that we apply the network simplex algorithm to find
optimal node coordinates, using the X coordinates as “ranks.”

The method involves constructing an auxiliary graph as
illustrated in Fig. 13. This transformation is the graphical
analogue of the algebraic transformation mentioned above for
removing the absolute values from the optimization problem.
The nodes of the auxiliary graph G‘ are the nodes of the
original graph G plus, for every edge e in G, there is a new
node ne. There are two kinds of edges in GI. One edge class
encodes the cost of the original edges. Every edge e = (U , U)
in G is replaced by two edges (ne, U) and (ne, v) with S = 0
and w = w(e)R(e). The other class of edges separates nodes
in the same rank. If U is the left neighbor of 20, then G’ has
an edge f = e(,,w) with S (f) = p(u, w) and w (f) = 0. This
edge forces the nodes to be sufficiently separated but does not
affect the cost of the layout.

P
e

Fig. 13. An auxiliary graph.

raphscan mid right

~

Fig. 14. Node ports in a graph.

We can now consider the level assignment problem on
GI, which can be solved using the network simplex method.
Any solution of the positioning problem on G corresponds to
a solution of the level assignment problem on G’ with the
same cost. This is achieved by assigning each ne the value
mzn(x,, xu), using the notation of Fig. 13 and where xu and
xu are the X coordinates assigned to U and U in G. Conversely,
any level assignment in G’ induces a valid positioning in G.
In addition, in an optimal level assignment, one of e, or e,
must have length 0, and the other has length 12, - x,1. This
means the cost of an original edge (U , w) in G equals the sum
of the cost of the two edges e,, e, in G’ and, globally, the two
solutions have the same cost. Thus, optimality of G’ implies
optimality for G and solving G‘ gives us a solution for G.

Using the auxiliary graph also permits the specification of
“node ports,” or edge endpoints offset in the X direction
from the center of the node. This makes it possible to draw
pictures of flat records as shown in Fig. 14. When computing
coordinates for nodes in these diagrams, the edge lengths must
include the displacements of the node ports as well as the
distance between the node center points. Let e = (U , w) be an
edge and let Au and AV be the specified X displacements
of the endpoints from the centers of U and U , respectively.
A A < 0 indicates the port is to the left of the vertex’s
center. Without loss of generality, assume Au 5 AV and let
de = AV - Au.de is a constant since it depends only on the
node ports and not the assignments of U and U. We can now
solve the same optimization problem, but the cost of edge e is
now given by R(e)w(e))zu - xu + d e l . In the auxiliary graph,
we now set S(eu) = de and S(e,) = 0. We can then extend
the foregoing argument to show that any positioning for G
corresponds to a level assignment for G‘; that any optimal
level assignment for G’ induces a valid positioning for G;

I I

224

I

IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

(a)

Fig. 15. How

and, in both cases, we have

for all edges (U, w) in G, where 1 represents the length function
in the level assignment on G’. This equation implies that the
optimal costs of the problems on G and G’ always differ by
the constant CeEE de. Therefore, a minimal assignment for
G’ corresponds to a minimal assignment for G.

Fig. 15(a) exemplifies how port offsets are translated into
the 6 value of edges in the auxiliary graph; Fig. 15(b) shows
how a solution relates to the original edge.

C. Implementation Details Revisited

The auxiliary graph is considerably larger than the original
one. If the original graph has V nodes, E edges, and R
ranks, the graph with “virtual” nodes added has V + D
nodes and E + D edges, where D is the number of “virtual
nodes.” The auxiliary graph then has V + E + 2 0 nodes and
V+2E +3D - R edges. This graph requires disproportionately
more time to use the network simplex approach. Consequently,
the optimizations to the network simplex algorithm described
at the end of Section I1 are crucial for this pass.

Further improvement is possible by noting that it is easy
to construct an initial feasible tree for the auxiliary graph by
taking advantage of its structure. To construct a feasible tree,
use all edges connecting nodes in the same rank. For each pair
of adjacent ranks, pick an edge f = (U, w) between the ranks
and add both fu and fu in G’ to the tree. This determines the
relative placement of all the nodes in the two ranks. Finally,
for every edge e = (w,x) # f between the two ranks, add
either e, or e, to the tree depending on whether w or x is
placed leftmost.

Without these improvements, using network simplex to
position the nodes took 5-10 times longer. With these im-
provements, our implementation runs as fast or faster than the
heuristic implementation. We do not doubt that the heuristic
in turn could also be tuned further, but the real advantage is
that the network simplex is much simpler code and produces
optimal solutions. Also, improvements that could be difficult to

program into the heuristic can be handled in network simplex.
As one example, local symmetry (A4) may be improved by
scanning the graph after network simplex terminates. Tree
edges whose cut value is exactly 0 identify subgraphs that
may be adjusted to equalize the slack on their incident edges
without changing the cost of the solution. This could be used
to increase symmetry, such as centering a node with an even
number of descendants.

V. DRAWING EDGES

In our method, edges are drawn as spline curves. Other
graph drawing programs of which we are aware use line
segments, and most make no attempt to avoid situations where
line segments overlap unrelated nodes. Although splines are
more difficult to program, they yield better drawings and help
to satisfy aesthetic criterion A2.

In dug, edge splines are made by a collection of heuristics
that replace the path of line segments between virtual nodes
with various straight and curved segments, as described in [l].
The drawback is that the splines sometimes bend sharply to
turn inside virtual node boxes or to avoid nearby nodes. The
virtual nodes end up being visible in the final layout. This
method does not use the available space effectively.

It is better to try to find the smoothest curve between two
points that avoids the “obstacles” of other nodes or splines.
We can then divide the spline routing algorithm into a top
half and a bottom half. The top half computes a polygonal
region of the layout where the spline may be drawn. It calls
the bottom half to compute the best spline within the region.
As a final step, the top half resizes virtual nodes according
to the bounding box of the spline, and clips the spline to the
boundaries of the endpoint node shapes.

A region and its spline are illustrated in Fig. 16.’ The
associated edge is from “Interdata” to “Unix TS 3.0.” More
formally, we draw splines by creating and solving instances
of the following subproblem. Given Bo,. . . , B,, q, 04, T, Or
where B, are boxes parallel to the coordinate axes, such that

‘Graph data courtesy of Ian F. Darwin, SoftQuad Inc., and Geoffrey
Collyer, Software Tool & Die.

GANSNER et al.: A TECHNIQUE FOR DRAWING DIRECrED GRAPHS 225

Fig. 16. Region for a spline (0.48 s user time Sun 4/280).

Bi has edges in common with Bi-1 and Bi+l; q and r are
points on or inside the first and last box respectively, find
SO,. . . , sn and BBo, . . . , BB,, where si are the control points
of a piecewise Bezier curve and BBi are boxes parallel to the
coordinate axes. The curve must have q and T as its endpoints.
OP and & are optional; if they are specified, then the curve must
have the given slope at the corresponding endpoint. The BBi
correspond to the Bi and are the smallest boxes that contain
the generated splines.

We next describe the two parts of the algorithm.

A. Finding the Region

There are three kinds of edges in the drawing: edges
between nodes on different ranks, flat edges between different
nodes on the same rank, and self-edges or loops.

Different Ranks: In practice, most edges connect nodes on
different ranks. The region for this kind of edge has a few
boxes near its tail port, then an alternating sequence of inter-
rank boxes and virtual node boxes, and finally a few boxes
near the head port. The tail and head port boxes route the
spline to the appropriate side of the node.

To curve as smoothly as possible, a spline should be allowed
all the space that is available. So the region should include not
only virtual node boxes, but also any extra space next to them.
After the spline has been computed, the virtual node boxes are
updated according to the BBi, so splines computed afterward
will be able to use all the space remaining but not come too
close to splines already drawn. Because splines are drawn by
a “greedy” strategy, they depend on the order in which they
are computed. It seems reasonable to route the shorter splines

first because they can often be drawn as straight lines, but the
order does not seem to affect the drawing quality much.

There are three details that can help to improve the appear-
ance of the splines. First, when edges cross, they should not
constrain each other too much, otherwise, a spline may have
an awkward, sharp turn. This is easily avoided by making
an adjustment to the boxes. When setting the size of a box,
we ignore virtual nodes to the left or right that correspond
to edges that cross within two ranks. Crossings further away
are not considered because unintended multiple crossings can
occur when the boxes become too sloppy.

Second, when an edge has a section that is almost vertical,
it looks better to just draw it as a vertical line. This is most
obvious when edges run alongside each other, because parallel
line segments look better than long segments with slightly
different slopes. When the region finding procedure detects a
long vertical section, it terminates the current region, draws its
spline, draws the vertical line segment, and finally begins the
region of the rest of the edge. This is one of the situations
where 8, and 8, are used, since the splines must have a
vertical tangent at the endpoint where they join the vertical
line segment.

Third, when several splines approach a common termination
point, it is important to avoid “accidental” intersections. To
do this, we check if there are previously computed splines
with the same endpoint. If so, we find the closest ones to
the right and the left. We then subdivide the inter-rank space,
and evaluate the left and right splines at the intervals. These
points (or the boundaries of the layout, if one of the left or
right splines does not exist) determine a set of boxes that

1

226 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

1. procedure compute-splines (B-array, q. theta-q, use-theta-q, s, theta-s, use-theta-s)

2. compute-L-array @-my);

3.

4.

5. else vector-q = zero-vector;

6.

7. else vector-s = zero-vector;

8.

9. compute-bboxes ();

computes-amy (B-array, L-array, q, s);
if use-theta-q then vector-q = anglevector(theta-q)

if use-theta-s then vector-s = anglevector(theta-s)

compute-s-may (B-array, L-array, p-array, vector-q, vector-s);

10. end
Fig. 17. Computing splines.

separate the new spline from the existing ones as they approach
the terminal node. The left and right splines and the boxes
that result can be seen in Fig. 16. This subdivision of the
inter-rank box could be viewed as approximating a polygonal
region not necessarily aligned with the coordinate axes. In
some layouts there are other places where nonaligned boxes
or other polygons could prevent unintended tangencies. If
we were writing this program again, we would try general
polygons instead of boxes.

Thus far we have not mentioned multiple edges between the
same pair of nodes. When these exist, a spline is computed
for one of the edges, and the rest of the edges are drawn by
adding an increasing X coordinate displacement to each one
(multiples of nodesep(G) work well). Space for multiple edges
must be reserved in the previous pass, described in Section IV,
when setting the separation between nodes.

Flat Edges: Flat edges are handled much like inter-rank
edges, but the region routes past intervening nodes and spaces
between nodes. We omit most of the details since they are quite
similar. One difference is that if an edge connects two adjacent
nodes it is drawn as a single spline with the following control
points:

For multiple flat edges, a spline is computed for the first
one, and succeeding edges are drawn by adding Y coordinate
displacements. If an edge has a label, the label is positioned
halfway along the edge.

Self-Edges: Self-edges are drawn as loops on the sides of
nodes. If an edge specifies tail or head ports, a polygonal
region is generated that connects the two ports. The orientation
of the region may be either clockwise or counterclockwise,
depending on the positions of the ports. If an edge does not
specify tail and head ports it is drawn as a sequence of two
splines, P O , . . . , p 3 and p 3 , . . . , p6. These control points are

computed as follows:

If there are multiple edges, their loops are nested. If an edge
has a label, the label is positioned halfway along the edge.
In the simple case mentioned above, the label is positioned
to the right of point p 3 . In the case of multiple edges with
labels, the sizes of the labels are added to the displacement
between edges. This prevents the curve of one edge crossing
over the label of another edge. Space for self-edges is allocated
in the previous pass, described in Section IV, when setting the
separation between adjacent nodes.

B. Computing Splines
The computation of the splines has three stages. First, a

piecewise linear curve or path lying entirely inside the region
is computed. Then, the endpoints of this path are used as hints
in the computation of a piecewise Bezier spline. Finally, the
actual space used by the curve is computed in terms of the
original boxes. The data structures computed by these three
stages are shown in Fig. 19. The region shown in this figure is
the same one as in Fig. 16. This example contains 13 boxes.

The three stages are outlined in Fig. 17.
Remarks on Fig. 17
2: c0mpute-L-array computes the array LO,. . . , L,+1

where L1 is the line segment that is the intersection of box
BiPl with box Bi. In Fig. 19, these line segments are shown
as thicker lines between boxes. There are 14 such segments.

3: compute-p-array computes an array of points
P O , . . . , pk defining a feasible path that connects q and s. In
Fig. 19, there are three such points.

GANSNER et al.: A TECHNIQUE FOR DRAWING DIRECTED GRAPHS 227

1.

2.

3.

4.

5 .

6.

7.

8.

9.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25,

26.

27.

28.

29.

30.

31.

32.

33.

procedure compute-s-array (B-may, L-array, p-array, vector-q, vector-s)

spline = generate-spline @-array. vector-q, vector-s);

if size (p-array) = 2 then

while spline-fits (spline, B-array, L-array) = False do

straighten-spline (spline);

elseif spline-fits (spline, B-array, L-array) = False then
count = 0;
ospline = spline;

repeat

spline = refine-spline (p-may, ospline,

mode (count, max-ite-rations));

fits = spline-fits (spline, B-array, L-array);

count = count + 1;

while (fits == False) and (count e= max-iterations);

if fits == False then

p = compute-splinesplit (spline, p-array);

compute-s-array (B-arrayl, L-arrayl, p-arrayl,

vector-q, vectorq);

compute-s-array (B-array2, L-arrayZ, p-array2,
reverse (vectors), vector-s);

return;

endif

endif

addto-s-may (spline);

end

Fig. 18. Spline drawing.

4-7: If use-theta-q or use-theta-s are true, the
curve is constrained to approach the corresponding endpoint
at the specified angles. vector-q and vector-s are nor-
malized vectors.

8: compute-s-array computes an array of points
SO,. . . , Sk defining a piecewise Bezier spline that connects q
and s and lies entirely inside the region. In the worst case, we
can have one Bezier spline per box. In most cases, however,
our approach generates significantly fewer splines. For
example, in Fig. 19, there are only two splines, one between po
and PI and one between p l and p2. In more complex paths,

there may even be fewer splines than line segments, since,
unlike a line, a spline can curve around obstacles.

9: computehboxes computes the space actually taken
up by the curve. It computes the array BBo, . . . , BB,, where
BBi is the narrowest subbox of Bi containing the curve.

compute-p-array and compute-s-array are both
implemented as divide-and-conquer methods, as shown in Fig.
18.

Remarks on Fig. 18
2: l ine- f i t s checks if the line defined by qand s lies

entirely inside the feasible region. The line is clipped to each

1

228 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

q = PO = LO

q = p2 = L13

Fig. 19. The three stages.

box; if the line intersects a box, it must do so along the
corresponding L segments.

3: If the (q, s) line does not fit, compute-linesplit
finds the L segment that is the furthest from the (q, s) line
and subdivides B-array and L-array along that segment. p is
the one of the two endpoints of the subdivision segment that
is closer to the (q , s) line. In Fig. 19, for example, the path
is subdivided along L7.
4: addto-p-array adds p to the array of endpoints for

the path.
5-6: The two recursive calls to compute-p-array com-

plete the computation of the path. compute-p-array is not
guaranteed to be the shortest path, but it works very well so we
have not developed it further. If it were important, the shortest
path could be found in linear time using convex hulls [18].

10: generate-spline computes a Bezier spline that
approximates the path. This is done using a common technique

11-13: The case where there is only one segment in the path
is handled first. spline-f its checks if the spline lies en-
tirely inside the region. The spline is sampled along its length
and these samples are then clipped as a linear path against the
box region. The process is similar to that of line-f its. As
long as the spline does not fit, straighten-spline adjusts
the control points of the spline to reduce the curvature. In the
worst case, the spline becomes a line, and that is known to fit
inside the path. This worst case can produce sharp turns. Most
of the time, however, the spline fits inside the region after just
a few iterations and this process does not produce any visual
anomalies. It is only when the region itself makes sharp turns
that the worst case may happen.

14-30: The second case is that the path has more than
one segment. If the spline does not fit, refinespline
perturbs the control points of the spline in an attempt to make
the spline fit. The approach is similar to the straightening
approach in lines 11-13. We try to decrease the curvature
of the spline. If this does not seem to improve the fit,
we try to increase the curvature. Since this process may
never terminate, max-iterations controls how many times
to try. mode returns a flag to indicate if the curvature is
to be increased or decreased. If the spline still does not
fit even after the refinement, we subdivide the problem.
compute-splinesplit finds the endpoint of a segment

~ 9 1 .

on the path that is the furthest from the spline and subdivides
the box and path arrays along that point. The two recursive
calls to compute-s-array compute two piecewise Bezier
splines, each fitting inside its corresponding part of the region.
To force the two curves to join smoothly at the subdivision
point, we also force the two splines to have the same unit
tangent vector at that point. This guaranties C1 continuity at
the subdivision point. Forcing C2 continuity does not seem
to produce better results and is also much more expensive
to compute. The straightening and refining heuristics, which
save a lot of time, are based on the assumption that the tangent
vectors at the endpoints of a spline can be scaled independently
of the tangent vectors of the two adjacent splines. To maintain
C2 continuity, whenever a tangent vector is scaled, the tangent
vector of the adjacent spline must also be scaled so that the
two vectors will continue to have the same length. The scaling
can propagate all the way to the end of the region. In addition,
some of these splines may not fit even after scaling, and this
would require more subdivisions, including subdivisions inside
a single box. This is more trouble than it is worth.

32: Finally, addto-s-array adds the spline to the piece-
wise Bezier spline.

C. Edge Labels
In dug, edge labels are placed next to the midpoint of the

spline. This is an oversimplification since the placement does
not avoid or even detect overlapping with other splines, labels,
or nodes. Yet graphs with edge labels are often small and
sparse, so this technique is sometimes adequate.

In dot, edge labels on inter-rank edges are represented as off-
center virtual nodes. This guarantees that labels never overlap
other nodes, edges or labels. Certain adjustments are needed
to make sure that adding labels does not affect the length
of edges. Setting the minimum edge length to 2 (effectively
doubling the ranks when virtual nodes are created) and halving
the separation between ranks compensates for the label nodes.
This makes it at least twice as expensive to draw a graph with
labels, but the labels are readable. Fig. 20 shows a drawing
of a graph with edge labels.

Edge labels on self-edges are easy to handle, but flat edges
are more complicated. Here we must choose the left-to-right
order for the virtual node of the label so that its X coordinate

GANSNER et al.: A TECHNIQUE FOR DRAWING DIRECTED GRAPHS 229

Fig. 20. A finite state machine with labeled transitions (0.15 s user time on a Sun 4/280).

lies between the endpoint coordinates, not to the right or the REFERENCES
left. At present we are still working on this problem.

More sophisticated placement of labels in diagrams (such
as geographic maps) is a difficult research problem deserving
further study. However, it is worth remarking that the label
placing program as described by Freeman and Ahn 1201 is
larger than our whole graph drawing program.

VI. CONCLUSIONS
We have described a method for drawing digraphs. Our con-

tributions are the application of network simplex for assigning
ranks and final node coordinates, an improved heuristic for
reducing edge crossing, and a method for making edge splines.
The method of finding node coordinates allows edges with
X coordinate endpoint displacements. These techniques are
straightforward to program, run fast enough for interactive use,
and make drawings that compare well with previous work as
to being readable and visually pleasing.

Further work might address the following:
Understand how to modify the graph or its layout to

Improve edge-crossing and spline-drawing heuristics.
Allow more interaction between the layout passes. Differ-
ent solutions having the same cost in one phase may affect
results a great deal in a following phase. For instance, two
layouts can have the same number of crossings but much
different final coordinates.
Support incremental (on-line) graph drawing for anima-
tion. Stability from one drawing to the next is essential.

enhance readability.

ACKNOWLEDGMENT
The referees made detailed comments that helped us to

clarify the presentation, particularly in Section 11. We also
wish to thank G. Jacobson and S. Lally for their criticisms
on content and style.

[l] E. R. Gansner, S. C. North, and K.-P. Vo, “DAG-A program that draws
directed graphs,” Software4ractice and Experience., vol. 17. no. l . ,
pp. 1047-1062, 1988.

[2] P. Eades and R. Tamassia, “Algorithms for automatic graph drawing: an
annotated bibliography,” Tech. Rep. CS-89-09 (Revised Version), Brown
University, Department of Computer Science, Providence RI, Oct. 1989.

[3] J. Warfield, “Crossing theory and hierarchy mapping,” fEEE Trans. Syst.
Man Cybern., vol. SMC-7 no. 7, pp. 505-523, July 1977.

[4] M. Carpano, “Automatic display of hierarchized graphs for computer
aided decision analysis,” fEEE Trans. Software Eng., vol. SE-12, no. 4,
pp. 538-546, 1980.

[5] K. S. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual un-
derstanding of hierarchical system structures,” IEEE Trans. Syst. Man,
Cybern, vol. SMC-11, no. 2, pp. 109-125, Feb. 1981.

[6] G. Di Battista, and R. Tamassia, “Algorithms for plane representations
of acyclic digraphs,” Theoretical Computer Sci. vol. 61, pp. 175-198,
1988.

[7] E. Koutsofios and S . North, “Drawing graphs with dot,” Tech. Rep.
(available from the authors), AT&T Bell Laboratories, Murray Hill NJ,
1992.

[8] L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and
A. Tuan, “A browser for directed graphs,” Software-Practice and
Experience, vol. 17. no. 1, pp. 61-76, Jan. 1987.

[9] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of
Computer Algorithms.

[lo] P. Eades, B. McKay, and N. Wormald, “On an edge crossing problem,”
in Proc. 9th Australian Computer Science Conj, 1986, pp. 327-334.

[I11 R. Garey, and D. S. Johnson, Computers and Intractability. San
Francisco: W. H. Freeman, 1979.

[12] G. Robbins, “The IS1 grapher, a portable tool for displaying graphs
pictorially,” Symboliikka ’87, Helsinki, Finland, also Tech. Rep. IST/RS-
87-196, Information Sciences Institute, Marina Del Rey, CA.

[13] A. V. Goldberg, and R. E. Tarjan, “Finding minimum-cost circulations
by successive approximation,” Mathematics of Operations Res., vol. 15,
no. 3, pp. 4 3 M 6 6 , 1990.

[14] E. R. Gansner, S. C. North, and K.-P. Vo, “On the rank assignment
problem,” to be submitted.

[15] V. Chvatal, Linear Programming.
[16] W. H. Cunningham, “A network simplex method,” Mathematical Pro-

gramming, vol. 11, pp. 105-116, 1976.
[17] P. Eades and N. Wormald, “The median heuristic for drawing 2-layers

networks,” Tech. Rep. 69, Dept. of Computer Science, University of
Queensland, 1986.

[18] S. Suri, “A linear time algorithm for minimum link paths inside a simple
polygon,” Computer Vision, Graphics, and Image Processing, vol. 35,

[19] A. S. Glassner Ed., Graphics Gems. San Diego: Academic Press, 1990.
[20] H. Freeman, and J. Ahn, “On the problem of placing names in a

geographic map,” fnt. J. Pattern Recognition and Artificial Intell., vol.
1, no. 1. pp. 121-140, 1987.

Reading, MA: Addison-Wesley, 1974.

.

New York: W. H. Freeman, 1983.

pp. 99-110, 1986.

230 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

Emden R. Gansner received the Ph.D. degree in
mathematics from The Massachusetts Institute of
Technology, Cambridge, MA, in 1980.

After teaching at the University of Illinois, Ur-
bana, he joined AT&T Bell Labs in 1980 and is
currently a Distinguished Member of the Technical
Staff. His research interests include graphic user in-
terfaces, programming environments, programming
languages, and graphs.

Eleftherios Koutsofios received the Diploma in
electrical engineering from the National Technical
University, Athens, Greece, and the M.A. and Ph.D.
degrees in computer science from Princeton Univer-
sity, Princeton, NJ.

He joined AT&T Bell Labs as a Member of
the Technical Staff in 1990. His research interests
are in the area of interactive techniques, algorithm
animation, and computational geometry. He has
worked on constraint-based drawing systems, pro-
grammable graphics editors, and tools for scientific
visualization.

Stephen C. North received the M.A. and Ph.D.
degrees in computer science from Princeton Univer-
sity, Princeton, NJ, in 1983 and 1986, respectively.

He has been a Member of the Technical Staff at
AT&T Bell Labs since 1980. His current research
interests include graph layout programs and algo-
rithms, and interactive programming environments.

Kiem-Phong Vo received the M.A. and Ph.D. de-
grees in mathematics from the University of Cali-
fornia at San Diego in 1977 and 1981.

He has been with AT&T Bell Laboratories since
1981 and is currently a Distinguished Member of the
Technical Staff. His research interests include graph
theory, data structures and algorithms, user inter-
face, and software tools. He authored or coauthored
several UNIX tools, including the latest System V
malloc memory allocation package, (curses) library
for screen management, and IFS, a language for

building applications with menu and form interfaces.
Dr. Vo was named an AT&T Bell Labs Fellow in 1992.

1

